数学知识:其他
求导
- 链式法则适用(
\[\frac{\partial f(x)g(x)}{\partial x}=f'(x)g(x)+f(x)g'(x)
\]
- 偏导结果与变量形状相同
\[\frac{\partial f(x)}{\partial x_{m\times n}}=y_{m\times n}
\]
- 相乘时要满足可乘条件
\[a_{m\times n}b_{n\times p}c_{p\times q}=d_{m\times q}
\]
向量求导
\[\dfrac{\partial x^Ta}{\partial x}=\dfrac{\partial a^Tx}{\partial x}=a
\]
\[\dfrac{\partial x^Tx}{\partial x}=2x
\]
\[\dfrac{\partial x^TAx}{\partial x}=Ax+A^Tx
\]
\[\dfrac{\partial a^Txx^Tb}{\partial X}=ab^Tx+ba^Tx
\]
矩阵求导
\[\dfrac{\partial a^TXb}{\partial X}=ab^T
\]
\[\dfrac{\partial a^TX^Tb}{\partial X}=ba^T
\]
\[\dfrac{\partial a^TXX^Tb}{\partial X}=ab^TX+ba^TX
\]
\[\dfrac{\partial a^TX^TXb}{\partial X}=Xba^T+Xab^T
\]
卷积
线性卷积
周期卷积
循环卷积
连续函数和离散函数的卷积
- 举例
连续函数
\[f(t) = sin(2\pi t)\rm{rect}(\it{t})
\]
离散序列
\[a = (1, 1, 1, 1, 1, 1)
\]
离散函数
\[g(t) = \sum\limits_{i=0}^{5}a_i\delta(t-i)
\]
卷积
\[\begin{align*}
f(t)*g(t)&=\sin(2\pi t)rect(t)*\sum\limits_{i=0}^{5}a_i\delta(t-i) \\
&=\sum\limits_{i=0}^{5}a_i\sin[2\pi*(t-i)]rect(t-i) \\
&=\sum\limits_{i=0}^{5}\sin[2\pi*(t-i)]rect(t-i)
\end{align*}
\]
仿真补充:!!!!!!!!!!!!!!!!
- 举例
两个“离散的连续函数”卷积
\[f(t)=\cos(2\pi t)rect(t)*\sum\limits_{i=0}^{5}a_i\delta(t-i) \\
g(t)=f(-t)
\]
卷积
\[\begin{align*}
f(t)*g(t) = &[\cos(2\pi t)rect(t)*\sum\limits_{i=0}^{5}a_i\delta(t-i)] \\
&*[\cos(2\pi t)rect(t)*\sum\limits_{j=0}^{5}a_j\delta(t+j)] \\
=&[\cos(2\pi t)rect(t)*\cos(2\pi t)rect(t)] \\
&*[\sum\limits_{i=0}^{5}a_i\delta(t-i)*\sum\limits_{j=0}^{5}a_j\delta(t+j)] \\
=&\dfrac{1}{2}\cos(2\pi t)rect(\dfrac{t}{2})*\sum\limits_{i=0}^{5}\sum\limits_{j=0}^{5}a_ia_j\delta(t-i+j) \\
=&\dfrac{1}{2}\sum\limits_{i=0}^{5}\sum\limits_{j=0}^{5}a_ia_j\cos[2\pi(t-i+j)]rect(\dfrac{t-i+j}{2})
\end{align*}
\]
傅里叶变换
FT
\[f(t)=\sum\limits_{i=0}^{N-1}f(x_i)e^{-j\pi t}
\]
DFT
FFT
内积、外积、点乘、叉乘
结果
向量(同维)内积后得数值,外积(不同维)得矩阵,点乘(同维)得数值,叉乘(同维)得同维向量。
本文来自博客园,作者:工大鸣猪,转载请注明原文链接:https://www.cnblogs.com/hit-ztx/p/17958362