HDFS balancer
1|0HDFS balancer
标签(空格分隔): Hadoop
2|0Balancer 必要性
3|0Balancer 开启步骤
balancer参数配置
4|0Balancer 遵循原则及步骤
Hadoop的开发人员在开发Balancer程序的时候,遵循了以下几点原则:
- 在执行数据重分布的过程中,必须保证数据不能出现丢失,不能改变数据的备份数,不能改变每一个rack中所具备的block数量。
- 系统管理员可以通过一条命令启动数据重分布程序或者停止数据重分布程序。
- Block在移动的过程中,不能暂用过多的资源,如网络带宽。
- 数据重分布程序在执行的过程中,不能影响name node的正常工作。
ebalance程序作为一个独立的进程与name node进行分开执行。
4|1步骤及过程
1 Rebalance Server从Name Node中获取所有的Data Node情况:每一个Data Node磁盘使用情况。
2 Rebalance Server计算哪些机器需要将数据移动,哪些机器可以接受移动的数据。并且从Name Node中获取需要移动的数据分布情况。
3 Rebalance Server计算出来可以将哪一台机器的block移动到另一台机器中去。
4,5,6 需要移动block的机器将数据移动的目的机器上去,同时删除自己机器上的block数据。
7 Rebalance Server获取到本次数据移动的执行结果,并继续执行这个过程,一直没有数据可以移动或者HDFS集群以及达到了平衡的标准为止。
Hadoop现有的这种Balancer程序工作的方式在绝大多数情况中都是非常适合的。但在有些情况下Balancer 达不到想要的效果。
1,数据是3份备份。
2,HDFS由2个rack组成。
3,2个rack中的机器磁盘配置不同,第一个rack中每一台机器的磁盘空间为1TB,第二个rack中每一台机器的磁盘空间为10TB。
4,现在大多数数据的2份备份都存储在第一个rack中。
在这样的一种情况下,HDFS级群中的数据肯定是不平衡的。现在我们运行Balancer程序,但是会发现运行结束以后,整个HDFS集群中的数据依旧不平衡:rack1中的磁盘剩余空间远远小于rack2。
这是因为Balance程序的开发原则1导致的。
简单的说,就是在执行Balancer程序的时候,不会将数据中一个rack移动到另一个rack中,所以就导致了Balancer程序永远无法平衡HDFS集群的情况。
针对于这种情况,可以采取2中方案:
1 继续使用现有的Balancer程序,但是修改rack中的机器分布。将磁盘空间小的机器分叉到不同的rack中去。
2 修改Balancer程序,允许改变每一个rack中所具备的block数量,将磁盘空间告急的rack中存放的block数量减少,或者将其移动到其他磁盘空间比较空闲的rack中去。
5|0源码(Apache Hadoop 2.7.3)
路径:org.apache.hadoop.hdfs.server.balancer 包内:
统计需要balance的datanode:
集群平均使用率(计算公式):average = totalUsedSpaces * 100 / totalCapacities
totalUsedSpaces:各datanode已使用空间(dfsUsed,不包含non dfsUsed)相加;
totalCapacities:各datanode总空间(DataNode配置的服务器磁盘目录)相加;
单个datanode使用率:utilization = dfsUsed * 100.0 / capacity
dfsUsed:当前datanode dfs(dfsUsed,不包含non dfsUsed)已使用空间;
capacity:当前datanode(DataNode配置的服务器磁盘目录)总空间;
单个datanode使用率与集群平均使用率差值:utilizationDiff = utilization - average
单个datanode utilizationDiff与阈值的差值: thresholdDiff = |utilizationDiff| - threshold
需要迁移或者可以迁入的空间:maxSize2Move = |utilizationDiff| * capacity
可以迁入的空间计算:Math.min(remaining, maxSizeToMove)
需要迁移的空间计算:Math.min(max, maxSizeToMove)
remaining:datanode节点剩余空间
max:默认单个datanode单次balance迭代可以迁移的最大空间限制,缺省10G)
默认迭代次数为5,即运行一次balance脚本,单个datanode可以最大迁移的空间为:5*10G = 50G
差值判断后datanode的保存队列:
数据迁移配对(原则:1. 优先为同机架,其次为其它机架; 2. 一对多配对):
构建每一对<source, target>时,需要计算当前可以迁移或者迁入的空间大小。
dispatcher创建dispatchExecutor线程池执行数据迁移调度。
【结语】
- 对于一些大型的HDFS集群(随时可能扩容或下架服务器),balance脚本需要作为后台常驻进程;
- 根据官方建议,脚本需要部署在相对空闲的服务器上;
- 停止脚本通过kill进程实现(建议不kill,后台运行完会自动停止,多次执行同时也只会有一个线程存在,其它自动失败);
链接:https://www.jianshu.com/p/f7c1cd476601
__EOF__
作 者:Zeus~
出 处:https://www.cnblogs.com/hit-zb/p/11939161.html
关于博主:编程路上的小学生,热爱技术,喜欢专研。评论和私信会在第一时间回复。或者直接私信我。
版权声明:署名 - 非商业性使用 - 禁止演绎,协议普通文本 | 协议法律文本。
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是博主的最大动力!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现