【转】Elasticsearch Java Rest Client 指南
原文地址:https://www.jianshu.com/p/d2c8326e8fa3
仔细看了下,5.6版本的RestHighLevelClient
就这么些API,有兴趣的朋友可以去看看源码:
以上包含了基本的增删改查和批量操作
我翻了一下官方文档,凉凉。确实像官方文档说的那样,需要完善。虽然是High Level的Client,但是东西少的可怜。
增(index)删(delete)改(update)查(get)操作都是和Index,type,id严格绑定的。
不能跨Index操作
目前几乎所有的High Level Rest Clent的中文介绍全部是照搬ES的文档啊。我懒得抄,而且我司用的Elasticsearch 5.6
明显特性比版本6少了很多。所以,我倒是想填这个坑,但是太大了。还是拉倒吧。强烈建议直接去翻官方文档,这个API版本不同版本的差别很大,一定去看自己使用的版本!现有的中文博客参考价值有限。包括本篇。
0x1 基本增删改查
- 第一步创建高级Client
RestClient restClient = RestClient
.builder(new HttpHost("localhost", 9200, "http"))
.build();
RestHighLevelClient highLevelClient = new RestHighLevelClient(restClient);
- 一次演示增删改查
//增, source 里对象创建方式可以是JSON字符串,或者Map,或者XContentBuilder 对象
IndexRequest indexRequest = new IndexRequest("指定index", "指定type", "指定ID") .source(builder);
highLevelClient.index(indexRequest);
//删
DeleteRequest deleteRequest = new DeleteRequest("指定index", "指定type", "指定ID");
highLevelClient.delete(deleteRequest);
//改, source 里对象创建方式可以是JSON字符串,或者Map,或者XContentBuilder 对象
UpdateRequest updateRequest = new UpdateRequest("指定index", "指定type", "指定ID").doc(builder);
highLevelClient.update(updateRequest);
//查
GetRequest getRequest = new GetRequest("指定index", "指定type", "指定ID");
highLevelClient.get(getRequest);
- 以上四个方法都有一个***Async的方法是异步回调的,只需添加ActionListener对象即可
- Get查询不是唯一的查询方法,还有SearchRequest等, 但是这个GetRequest只支持单Index操作
- Get操作支持限定查询的字段,传入fetchSourceContext对象即可
- Update 操作演示的并不是全量替换,而是和现有文档作合并,除了doc操作还有使用Groovy script操作。
- upsert类似update操作,不过如果文档不存在会作为新的doc存入ES
0x2 Bulk批量操作
其实就是把一大堆IndexRequest, UpdateRequest, DeleteRequest操作放在一起。
所以缺点就是必须指定Index,否则操作没戏。
简单示例
BulkRequest request = new BulkRequest();
request.add(new IndexRequest("指定index", "指定type", "指定ID_1").source(XContentType.JSON,"field", "foo"));
request.add(new DeleteRequest("指定index", "指定type", "指定ID_2"));
request.add(new UpdateRequest("指定index", "指定type", "指定ID_3") .doc(XContentType.JSON,"other", "test"));
BulkResponse bulkResponse = client.bulk(request);
for (BulkItemResponse bulkItemResponse : bulkResponse) {
if (bulkItemResponse.isFailed()) {
BulkItemResponse.Failure failure = bulkItemResponse.getFailure();
continue;
}
DocWriteResponse itemResponse = bulkItemResponse.getResponse();
if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.INDEX
|| bulkItemResponse.getOpType() == DocWriteRequest.OpType.CREATE) {
IndexResponse indexResponse = (IndexResponse) itemResponse;
} else if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.UPDATE) {
UpdateResponse updateResponse = (UpdateResponse) itemResponse;
} else if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.DELETE) {
DeleteResponse deleteResponse = (DeleteResponse) itemResponse;
}
}
0x3 SearchRequest高级查询
支持多文档查询、聚合操作。可以完全取代GetRequest。
// 创建
SearchRequest searchRequest = new SearchRequest();
SearchSourceBuilder builder = new SearchSourceBuilder();
searchSourceBuilder.query(xxxQuery);
searchRequest.source(builder);
可以在创建的时候指定index,SearchRequest searchRequest = new SearchRequest("some_index*");
,支持带*号的模糊匹配
当然,这并不是最厉害的地方,最NB的地方是,支持QueryBuilder,兼容之前TransportClient的代码
- 我自己写的跨Index模糊查询
SearchRequest searchRequest = new SearchRequest("gdp_tops*");
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.query(QueryBuilders.termQuery("city", "北京市"));
sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
searchRequest.source(sourceBuilder);
try {
SearchResponse response = highLevelClient.search(searchRequest);
Arrays.stream(response.getHits().getHits())
.forEach(i -> {
System.out.println(i.getIndex());
System.out.println(i.getSource());
System.out.println(i.getType());
});
System.out.println(response.getHits().totalHits);
} catch (IOException e) {
e.printStackTrace();
}
- 官方给出的聚合查询
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
TermsAggregationBuilder aggregation = AggregationBuilders.terms("by_company")
.field("company.keyword");
aggregation.subAggregation(AggregationBuilders.avg("average_age")
.field("age"));
searchSourceBuilder.aggregation(aggregation);
- 当然还支持异步查询
官方示例
client.searchAsync(searchRequest, new ActionListener<SearchResponse>() {
@Override
public void onResponse(SearchResponse searchResponse) {
}
@Override
public void onFailure(Exception e) {
}
});
- 查询结果处理
查询结束后会得到一个SearchResponse对象,可以拿到查询状态,消耗时间,查询到的总条目数等参数,具体结果操作
SearchHit[] searchHits = hits.getHits();
for (SearchHit hit : searchHits) {
// 结果的Index
String index = hit.getIndex();
// 结果的type
String type = hit.getType();
// 结果的ID
String id = hit.getId();
// 结果的评分
float score = hit.getScore();
// 查询的结果 JSON字符串形式
String sourceAsString = hit.getSourceAsString();
// 查询的结果 Map的形式
Map<String, Object> sourceAsMap = hit.getSourceAsMap();
// Document的title
String documentTitle = (String) sourceAsMap.get("title");
// 结果中的某个List
List<Object> users = (List<Object>) sourceAsMap.get("user");
// 结果中的某个Map
Map<String, Object> innerObject = (Map<String, Object>) sourceAsMap.get("innerObject");
}
- 聚合查询
前面演示的是正常查询,聚合查询官方文档也有展示
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
TermsAggregationBuilder aggregation = AggregationBuilders.terms("by_company")
.field("company.keyword");
aggregation.subAggregation(AggregationBuilders.avg("average_age")
.field("age"));
searchSourceBuilder.aggregation(aggregation);
和query查询一样,searchSourceBuilder
使用aggregation()
方法即可
查询到的结果处理也跟普通查询类似,处理一下Bucket就可以展示到接口了
Aggregations aggregations = searchResponse.getAggregations();
Terms byCompanyAggregation = aggregations.get("by_company");
Bucket elasticBucket = byCompanyAggregation.getBucketByKey("Elastic");
Avg averageAge = elasticBucket.getAggregations().get("average_age");
double avg = averageAge.getValue();
0x4 分页和滚动搜索
有时候结果需要分页查询,推荐使用searchSourceBuilder
的
sourceBuilder.from(0);
sourceBuilder.size(5);
有时候需要查询的数据太多,可以考虑使用SearchRequest.scroll()
方法拿到scrollId
;之后再使用SearchScrollRequest
其用法如下:
SearchRequest searchRequest = new SearchRequest("posts");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(matchQuery("title", "Elasticsearch"));
searchSourceBuilder.size(size);
searchRequest.source(searchSourceBuilder);
searchRequest.scroll(TimeValue.timeValueMinutes(1L));
SearchResponse searchResponse = client.search(searchRequest);
String scrollId = searchResponse.getScrollId();
SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId);
scrollRequest.scroll(TimeValue.timeValueSeconds(30));
SearchResponse searchScrollResponse = client.searchScroll(scrollRequest);
scrollId = searchScrollResponse.getScrollId();
hits = searchScrollResponse.getHits();
assertEquals(3, hits.getTotalHits());
assertEquals(1, hits.getHits().length);
assertNotNull(scrollId);
Scroll查询的使用场景是密集且前后有关联的查询。如果只是一般的分页,可以使用size from来处理