SLAM+语音机器人DIY系列:(四)差分底盘设计——5.底盘PID控制参数整定

 温馨提示

本篇文章已经收录在我最新出版的书籍《机器人SLAM导航核心技术与实战》,感兴趣的读者可以购买纸质书籍来进行更加深入和系统性的学习,购买链接如下:

摘要                                            

运动底盘是移动机器人的重要组成部分,不像激光雷达、IMU、麦克风、音响、摄像头这些通用部件可以直接买到,很难买到通用的底盘。一方面是因为底盘的尺寸结构和参数是要与具体机器人匹配的;另一方面是因为底盘包含软硬件整套解决方案,是很多机器人公司的核心技术,一般不会随便公开。出于强烈的求知欲与学习热情,我想自己DIY一整套两轮差分底盘,并且将完整的设计过程公开出去供大家学习。说干就干,本章节主要内容:

1.stm32主控硬件设计

2.stm32主控软件设计

3.底盘通信协议

4.底盘ROS驱动开发

5.底盘PID控制参数整定

6.底盘里程计标



5.底盘PID控制参数整定            

我们的miiboo机器人底盘的stm32控制板中已经内置了整定好的PID参数,如果选用我们提供的控制板和电机,一般情况下是不需要整定PID的。

对于想体验一下PID参数整定过程或将我们的miiboo机器人底盘的stm32控制板应用到其他地方的朋友,这里给出了整定PID的整个操作过程和思路,方便大家学习和更深层次的研究。首先,对PID三个参数定性的分析,先有个感性的认识,如图49

(图49PID参数定性分析

其次,由于我们的miiboo机器人底盘的stm32控制板中采用的是增量式PID,所以这里对增量式PID参数的特殊性进行一些说明,如图50

(图50)离散域位置式PID与增量式PID数学表达式

位置型PID的参数整定过程一般是,先整定KP,然后整定KI,最后整定KD;对比位置型PID与增量型PID的数学表达式,可以发现位置型KP和增量型KI一样,位置型KI和增量型KD一样,位置型KD和增量型KP一样,如图51。这样,增量型PID应该先整定KI,然后整定KD,最后整定KP。这一点需要特别注意,弄错顺序的话会发现整定规律完全不适用的。

(图51)增量式PID参数特殊性说明

在机器人上进行具体PID整定操作之前,先对整定原理做一些讲解。下面的表述是针对增量型PID的,即KI为比例参数、KD为积分参数、KP为微分参数。这里使用试凑法对miiboo机器人底盘的增量PID参数进行整定:

1步:

首先只整定比例部分。比例系数KI由小变大,观察相应的系统响应,直到得到反应快,超调小的响应曲线。系统若无静差或静差已小到允许范围内,并且响应效果良好,那么只须用比例调节器即可。

2步:

若稳态误差不能满足设计要求,则需加入积分控制。整定时先置KD为较小值,并将经第1步整定得到的KI减小些( 如缩小为原值的0.8),然后增大KD,并使系统在保持良好动态响应的情况下,消除稳态误差。这种调整可根据响应曲线的状态,反复改变KIKD,以期得到满意的控制过程。

3步:

若使用比例-积分调节器消除了稳态误差,但动态过程仍不能满意,则可加入微分环节。在第2步整定的基础上,逐步增大KP,同时相应地改变KIKD,逐步试凑以获得满意的调节效果。

原理了解后,就要到实际的miiboo机器人上进行整定了,首先需要将底盘的DATA-uart2DEBUG-uart1串口连接到机器人的主板树莓派3中,并确保被树莓派识别的串口设备号为底盘驱动设置的值,如果串口号不匹配需要先进行匹配,关于这部分内容将在miiboo机器人SLAM导航中做更详细的展开。然后,需要启动底盘控制节点、底盘调试节点、键盘控制节点。

#打开终端,启动底盘控制节点
roslaunch miiboo_bringup minimal.launch 

#再打开一个终端,启动底盘调试节点,按提示输入命令
roslaunch miiboo_bringup pid_set.launch

#再打开一个终端,键盘控制节点
rosrun teleop_twist_keyboard teleop_twist_keyboard.py

#再打开一个终端,用rqt_plot对底盘速度曲线进行绘制,指定曲线数据来源的topic
rosrun rqt_plot rqt_plot

键盘控制节点teleop_twist_keyboard需要通过apt-get命令来安装,rqt_plotROS提供的绘图工具,关于这些的具体使用方法将在miiboo机器人SLAM导航中做更详细的展开。

最后,就是通过观察速度曲线,按照试凑法的步骤,在底盘调试节点的终端中输入相应的kpkikd参数,不断重复这个过程直到速度曲线达到一个比较满意的形状。rqt_plot速度曲线的样子如图52所示。

(图52rqt_plot速度曲线

后记              

------SLAM+语音机器人DIY系列【目录】快速导览------

第1章:Linux基础

1.Linux简介

2.安装Linux发行版ubuntu系统

3.Linux命令行基础操作

第2章:ROS入门

1.ROS是什么

2.ROS系统整体架构

3.在ubuntu16.04中安装ROS kinetic

4.如何编写ROS的第一个程序hello_world

5.编写简单的消息发布器和订阅器

6.编写简单的service和client

7.理解tf的原理

8.理解roslaunch在大型项目中的作用

9.熟练使用rviz

10.在实际机器人上运行ROS高级功能预览

第3章:感知与大脑

1.ydlidar-x4激光雷达

2.带自校准九轴数据融合IMU惯性传感器

3.轮式里程计与运动控制

4.音响麦克风与摄像头

5.机器人大脑嵌入式主板性能对比

6.做一个能走路和对话的机器人

第4章:差分底盘设计

1.stm32主控硬件设计

2.stm32主控软件设计

3.底盘通信协议

4.底盘ROS驱动开发

5.底盘PID控制参数整定

6.底盘里程计标

第5章:树莓派3开发环境搭建

1.安装系统ubuntu_mate_16.04

2.安装ros-kinetic

3.装机后一些实用软件安装和系统设置

4.PC端与robot端ROS网络通信

5.Android手机端与robot端ROS网络通信

6.树莓派USB与tty串口号绑定

7.开机自启动ROS节点

第6章:SLAM建图与自主避障导航

1.在机器人上使用传感器

2.google-cartographer机器人SLAM建图

3.ros-navigation机器人自主避障导航

4.多目标点导航及任务调度

5.机器人巡航与现场监控

第7章:语音交互与自然语言处理

1.语音交互相关技术

2.机器人语音交互实现

3.自然语言处理云计算引擎

第8章:高阶拓展

1.miiboo机器人安卓手机APP开发

2.centos7下部署Django(nginx+uwsgi+django+python3)

 


 

参考文献

 

[1] 张虎,机器人SLAM导航核心技术与实战[M]. 机械工业出版社,2022.

 

 

 

 

前言
编程基础篇
第1章 ROS入门必备知识
1.1 ROS简介 2
1.1.1 ROS的性能特色 2
1.1.2 ROS的发行版本 3
1.1.3 ROS的学习方法 3
1.2 ROS开发环境的搭建 3
1.2.1 ROS的安装 4
1.2.2 ROS文件的组织方式 4
1.2.3 ROS网络通信配置 5
1.2.4 集成开发工具 5
1.3 ROS系统架构 5
1.3.1 从计算图视角理解ROS架构 6
1.3.2 从文件系统视角理解ROS架构 7
1.3.3 从开源社区视角理解ROS架构 8
1.4 ROS调试工具 8
1.4.1 命令行工具 9
1.4.2 可视化工具 9
1.5 ROS节点通信 10
1.5.1 话题通信方式 12
1.5.2 服务通信方式 15
1.5.3 动作通信方式 19
1.6 ROS的其他重要概念 25
1.7 ROS 2.0展望 28
1.8 本章小结 28
第2章 C++编程范式
2.1 C++工程的组织结构 29
2.1.1 C++工程的一般组织结构 29
2.1.2 C++工程在机器人中的组织结构 29
2.2 C++代码的编译方法 30
2.2.1 使用g++编译代码 31
2.2.2 使用make编译代码 32
2.2.3 使用CMake编译代码 32
2.3 C++编程风格指南 33
2.4 本章小结 34
第3章 OpenCV图像处理
3.1 认识图像数据 35
3.1.1 获取图像数据 35
3.1.2 访问图像数据 36
3.2 图像滤波 37
3.2.1 线性滤波 37
3.2.2 非线性滤波 38
3.2.3 形态学滤波 39
3.3 图像变换 40
3.3.1 射影变换 40
3.3.2 霍夫变换 42
3.3.3 边缘检测 42
3.3.4 直方图均衡 43
3.4 图像特征点提取 44
3.4.1 SIFT特征点 44
3.4.2 SURF特征点 50
3.4.3 ORB特征点 52
3.5 本章小结 54
硬件基础篇
第4章 机器人传感器
4.1 惯性测量单元 56
4.1.1 工作原理 56
4.1.2 原始数据采集 60
4.1.3 参数标定 65
4.1.4 数据滤波 73
4.1.5 姿态融合 75
4.2 激光雷达 91
4.2.1 工作原理 92
4.2.2 性能参数 94
4.2.3 数据处理 96
4.3 相机 100
4.3.1 单目相机 101
4.3.2 双目相机 107
4.3.3 RGB-D相机 109
4.4 带编码器的减速电机 111
4.4.1 电机 111
4.4.2 电机驱动电路 112
4.4.3 电机控制主板 113
4.4.4 轮式里程计 117
4.5 本章小结 118
第5章 机器人主机
5.1 X86与ARM主机对比 119
5.2 ARM主机树莓派3B+ 120
5.2.1 安装Ubuntu MATE 18.04 120
5.2.2 安装ROS melodic 122
5.2.3 装机软件与系统设置 122
5.3 ARM主机RK3399 127
5.4 ARM主机Jetson-tx2 128
5.5 分布式架构主机 129
5.5.1 ROS网络通信 130
5.5.2 机器人程序的远程开发 130
5.6 本章小结 131
第6章 机器人底盘
6.1 底盘运动学模型 132
6.1.1 两轮差速模型 132
6.1.2 四轮差速模型 136
6.1.3 阿克曼模型 140
6.1.4 全向模型 144
6.1.5 其他模型 148
6.2 底盘性能指标 148
6.2.1 载重能力 148
6.2.2 动力性能 148
6.2.3 控制精度 150
6.2.4 里程计精度 150
6.3 典型机器人底盘搭建 151
6.3.1 底盘运动学模型选择 152
6.3.2 传感器选择 152
6.3.3 主机选择 153
6.4 本章小结 155
SLAM篇
第7章 SLAM中的数学基础
7.1 SLAM发展简史 158
7.1.1 数据关联、收敛和一致性 160
7.1.2 SLAM的基本理论 161
7.2 SLAM中的概率理论 163
7.2.1 状态估计问题 164
7.2.2 概率运动模型 166
7.2.3 概率观测模型 171
7.2.4 概率图模型 173
7.3 估计理论 182
7.3.1 估计量的性质 182
7.3.2 估计量的构建 183
7.3.3 各估计量对比 190
7.4 基于贝叶斯网络的状态估计 193
7.4.1 贝叶斯估计 194
7.4.2 参数化实现 196
7.4.3 非参数化实现 202
7.5 基于因子图的状态估计 206
7.5.1 非线性最小二乘估计 206
7.5.2 直接求解方法 206
7.5.3 优化方法 208
7.5.4 各优化方法对比 218
7.5.5 常用优化工具 219
7.6 典型SLAM算法 221
7.7 本章小结 221
第8章 激光SLAM系统
8.1 Gmapping算法 223
8.1.1 原理分析 223
8.1.2 源码解读 228
8.1.3 安装与运行 233
8.2 Cartographer算法 240
8.2.1 原理分析 240
8.2.2 源码解读 247
8.2.3 安装与运行 258
8.3 LOAM算法 266
8.3.1 原理分析 266
8.3.2 源码解读 267
8.3.3 安装与运行 270
8.4 本章小结 270
第9章 视觉SLAM系统
9.1 ORB-SLAM2算法 274
9.1.1 原理分析 274
9.1.2 源码解读 310
9.1.3 安装与运行 319
9.1.4 拓展 327
9.2 LSD-SLAM算法 329
9.2.1 原理分析 329
9.2.2 源码解读 334
9.2.3 安装与运行 337
9.3 SVO算法 338
9.3.1 原理分析 338
9.3.2 源码解读 341
9.4 本章小结 341
第10章 其他SLAM系统
10.1 RTABMAP算法 344
10.1.1 原理分析 344
10.1.2 源码解读 351
10.1.3 安装与运行 357
10.2 VINS算法 362
10.2.1 原理分析 364
10.2.2 源码解读 373
10.2.3 安装与运行 376
10.3 机器学习与SLAM 379
10.3.1 机器学习 379
10.3.2 CNN-SLAM算法 411
10.3.3 DeepVO算法 413
10.4 本章小结 414
自主导航篇
第11章 自主导航中的数学基础
11.1 自主导航 418
11.2 环境感知 420
11.2.1 实时定位 420
11.2.2 环境建模 421
11.2.3 语义理解 422
11.3 路径规划 422
11.3.1 常见的路径规划算法 423
11.3.2 带约束的路径规划算法 430
11.3.3 覆盖的路径规划算法 434
11.4 运动控制 435
11.4.1 基于PID的运动控制 437
11.4.2 基于MPC的运动控制 438
11.4.3 基于强化学习的运动控制 441
11.5 强化学习与自主导航 442
11.5.1 强化学习 443
11.5.2 基于强化学习的自主导航 465
11.6 本章小结 467
第12章 典型自主导航系统
12.1 ros-navigation导航系统 470
12.1.1 原理分析 470
12.1.2 源码解读 475
12.1.3 安装与运行 479
12.1.4 路径规划改进 492
12.1.5 环境探索 496
12.2 riskrrt导航系统 498
12.3 autoware导航系统 499
12.4 导航系统面临的一些挑战 500
12.5 本章小结 500
第13章 机器人SLAM导航综合实战
13.1 运行机器人上的传感器 502
13.1.1 运行底盘的ROS驱动 503
13.1.2 运行激光雷达的ROS驱动 503
13.1.3 运行IMU的ROS驱动 504
13.1.4 运行相机的ROS驱动 504
13.1.5 运行底盘的urdf模型 505
13.1.6 传感器一键启动 506
13.2 运行SLAM建图功能 506
13.2.1 运行激光SLAM建图功能 507
13.2.2 运行视觉SLAM建图功能 508
13.2.3 运行激光与视觉联合建图功能 508
13.3 运行自主导航 509
13.4 基于自主导航的应用 510
13.5 本章小结 511
附录A Linux与SLAM性能优化的探讨
附录B 习题
posted @ 2019-02-20 00:29  小虎哥哥爱学习  阅读(3998)  评论(0编辑  收藏  举报