[NOIp2003] 加分二叉树

Description

设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。

每个节点都有一个分数(均为正整数),记第i个节点的分数为\(d_i\),tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分 × subtree的右子树的加分 + subtree的根的分数

若某个子树为空,规定其加分为1。叶子的加分就是叶节点本身的分数,不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。

要求输出:

(1)tree的最高加分

(2)tree的前序遍历

Input

第1行:一个整数n,为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(0<分数<100)。

Output

第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。如果存在多种方案,则输出字典序最小的方案。

Sample Input

5
5 7 1 2 10

Sample Output

145
3 1 2 4 5

Hint

\(n < 30\)

题解

题目给定了一棵中序遍历的树,要我们求给定了一定计算方式后最大的前序遍历的树

我用的是\(DP\),用\(f[i][j]\)表示\([i,j]\)这个闭区间构成的一棵中序遍历树的最大值

这显然就变成了一个区间合并问题

状态转移方程为\(f[i][j]=max(f[i][k-1]*f[k+1][j]+a[k])\)\(k\)枚举闭区间\([i,j]\)的根,显然\(k\epsilon [i,j]\)

再考虑边界条件,\(f[i][j]\)代表的为叶子结点,\(f[i][i-1]\)代表空子树,根据题意,于是就有了\(f[i][i]=a[i],f[i][i-1]=1\)

最终题目要输出前序遍历,于是我们加一个\(root[i][j]\)数组记录使\(f[i][j]\)最大的\(k\)(即根的下标),放在循环里面就可以了

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;

const int N=50;
int n,a[N],f[N][N],root[N][N];

void Output(int l,int r)
{
    if(l>r) return;
    if(l==r) {printf("%d ",l); return;}
    printf("%d ",root[l][r]);
    Output(l,root[l][r]-1),Output(root[l][r]+1,r);
}

int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;++i) scanf("%d",&a[i]);
    for(int i=0;i<=n+1;++i)
        f[i][i]=a[i],f[i][i-1]=1;
    for(int i=n;i>=1;--i)
        for(int j=i+1;j<=n;++j)
            for(int k=i;k<=j;++k)//枚举[i,j]这个闭区间内的根
                if(f[i][j]<(f[i][k-1]*f[k+1][j]+a[k]))
                {
                    f[i][j]=f[i][k-1]*f[k+1][j]+a[k];
                    root[i][j]=k;
                }
    printf("%d\n",f[1][n]);
    Output(1,n);
    return 0;
}
posted @ 2020-02-27 23:37  OItby  阅读(247)  评论(0编辑  收藏  举报