Python学习笔记:Pandas Apply函数加速技巧
一、前沿技术
Dask包
数据量大、内存不足、复杂并行处理
计算图、并行、扩展分布式节点、利用GPU计算
类似 TensorFlow 对神经网络模型的处理
CUDF包
CUDF在GPU加速Pandas
- 缺点:GPU贵!
二、原始Apply
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(0,11,size=(1000000,5)), columns=('a','b','c','d','e'))
def func(a,b,c,d,e):
if e == 10:
return c*d
elif (e < 10) and (e >= 5):
return c+d
elif e < 5:
return a+b
%%time
df['new'] = df.apply(lambda x: func(x['a'], x['b'], x['c'], x['d'], x['e']), axis=1)
# 按行计算 跨列
# Wall time: 25.4 s
三、Swift并行加速
安全Swifit包,并执行。
pip install swifter
%%time
import swifter
df['new'] = df.swifter.apply(lambda x: func(x['a'], x['b'], x['c'], x['d'], x['e']), axis=1)
# Dask Apply: 100%
# 16/16 [00:09<00:00, 1.47it/s]
# Wall time: 12.4 s
三、向量化
使用 Pandas
和 Numpy
最快方法是将函数向量化。
避免:for循环、列表处理、apply等处理
%%time
df['new'] = df['c'] * df['d']
mask = df['e'] < 10
df.loc[mask, 'new'] = df['c'] + df['d']
mask = df['e'] < 5
df.loc[mask, 'new'] = df['a'] + df['b']
# Wall time: 159 ms
四、类别转化 + 向量化
df.dtypes
'''
a int32
b int32
c int32
d int32
e int32
new int32
dtype: object
'''
将列类别转化为 int16
,再进行相应的向量化操作。
for col in ('a','b','c','d','e'):
df[col] = df[col].astype(np.int16)
%%time
df['new'] = df['c'] * df['d']
mask = df['e'] < 10
df.loc[mask, 'new'] = df['c'] + df['d']
mask = df['e'] < 5
df.loc[mask, 'new'] = df['a'] + df['b']
# Wall time: 133 ms
五、转化为values处理
转化为 .values
等价于转化为 numpy
,向量化操作会更加快捷。
%%time
df['new'] = df['c'].values * df['d'].values
mask = df['e'].values < 10
df.loc[mask, 'new'] = df['c'] + df['d']
mask = df['e'].values < 5
df.loc[mask, 'new'] = df['a'] + df['b']
# Wall time: 101 ms
六、其他学习
1.查看维度
df.shape # (1000000, 6)
2.基本信息
维度、列名称、数据格式(是否空值)、所占空间等
df.info()
'''
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 a 1000000 non-null int16
1 b 1000000 non-null int16
2 c 1000000 non-null int16
3 d 1000000 non-null int16
4 e 1000000 non-null int16
5 new 1000000 non-null int16
dtypes: int16(6)
memory usage: 11.4 MB
'''
3.每列数据格式
df.dtypes
'''
a int16
b int16
c int16
d int16
e int16
new int16
dtype: object
'''
4.某列数据格式
float64
、int64
、object
等格式都是 Pandas
专用的数据格式。
df['new'].dtype
# dtype('int16')
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)