Loading

摘要: 【Python】基于动态残差学习的堆叠式LSTM模型和传统BP在股票预测中的应用 本论文探讨了长短时记忆网络(LSTM)和反向传播神经网络(BP)在股票价格预测中的应用。首先,我们介绍了LSTM和BP在时间序列预测中的基本原理和应用背景。通过对比分析两者的优缺点,我们选择了LSTM作为基础模型,因其能够有效处理时间序列数据中的长期依赖关系,在基础LSTM模型的基础上,我们引入了动态残差学习(dynamic skip connection)的概念,通过动态调整残差连接,提高了模型的长期记忆能力和预测准确性。实验证明,动态残差的引入在股票价格预测任务中取得了显著的改进效果。 阅读全文
posted @ 2024-02-08 16:33 hiddenSharp429 阅读(227) 评论(0) 推荐(0) 编辑