关闭页面特效

pyecharts(1)基本图

from pyecharts.charts import * from pyecharts.components import Table from pyecharts import options as opts from pyecharts.commons.utils import JsCode import random import datetime import math import numpy as np from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = "https://cdn.kesci.com/lib/pyecharts_assets/" # 设置host地址

1|0常用图


1|1直方图


x_data = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] y_data = [123, 153, 89, 107, 98, 23] '''直方图''' bar = ( Bar() .add_xaxis(x_data) .add_yaxis('', y_data) ) bar.render_notebook()

1|2折线图


'''折线图''' line = ( Line() .add_xaxis(x_data) .add_yaxis('',y_data) ) line.render_notebook()

1|3箱线图


x_data = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] y_data = [[random.randint(100, 200) for i in range(10)] for item in x_data] '''箱线图''' box = ( Boxplot() .add_xaxis(x_data) ) box.add_yaxis('', box.prepare_data(y_data)) box.render_notebook()

1|4散点图


'''散点图''' x_data = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] y_data = [123, 153, 89, 107, 98, 23] scatter = (Scatter() .add_xaxis(x_data) .add_yaxis('', y_data) ) scatter.render_notebook()

1|5涟漪图


'''涟漪图''' effectscatter = (EffectScatter() .add_xaxis(x_data) .add_yaxis('', y_data) ) effectscatter.render_notebook()

1|6k线图


'''k线图''' date_list = ["2020/4/{}".format(i + 1) for i in range(30)] y_data = [ [2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38], [2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8], [2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82], [2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38], [2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73], [2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03], [2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07], [2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82], [2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78], [2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63], [2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65], [2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14], [2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02], [2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96], [2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33], ] kline = (Kline() .add_xaxis(date_list) .add_yaxis('', y_data) ) kline.render_notebook()

1|7热力图


data = [[i, j, random.randint(0, 100)] for i in range(24) for j in range(7)] hour_list = [str(i) for i in range(24)] week_list = ['周日', '周一', '周二', '周三', '周四', '周五', '周六'] '''热力图''' heat = (HeatMap() .add_xaxis(hour_list) .add_yaxis('', week_list, data) ) heat.render_notebook()

1|8象形图


x_data = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] y_data = [123, 153, 89, 107, 98, 23] '''象形图''' pictorialbar = (PictorialBar() .add_xaxis(x_data) .add_yaxis('', y_data) ) pictorialbar.render_notebook()

1|9叠加图


x_data = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] y_data_bar = [123, 153, 89, 107, 98, 23] y_data_line = [153, 107, 23, 89, 123, 107] bar = (Bar() .add_xaxis(x_data) .add_yaxis('', y_data_bar) ) line = (Line() .add_xaxis(x_data) .add_yaxis('', y_data_line) ) '''叠加图''' overlap = bar.overlap(line) # overlap = line.overlap(bar) overlap.render_notebook()

2|0地图


2|1GEO-地理坐标


province = [ '广东', '湖北', '湖南', '四川', '重庆', '黑龙江', '浙江', '山西', '河北', '安徽', '河南', '山东', '西藏'] data = [(i, random.randint(50, 150)) for i in province] '''GEO-地理坐标''' geo = (Geo() .add_schema(maptype='china') .add('', data) ) geo.render_notebook()

2|2map地图


province = [ '广东', '湖北', '湖南', '四川', '重庆', '黑龙江', '浙江', '山西', '河北', '安徽', '河南', '山东', '西藏'] data = [(i, random.randint(50, 150)) for i in province] '''map地图''' map_ = ( Map() .add("", data, 'china') ) map_.render_notebook()

2|3百度地图


province = [ '广东', '湖北', '湖南', '四川', '重庆', '黑龙江', '浙江', '山西', '河北', '安徽', '河南', '山东', '西藏'] data = [(i, random.randint(50, 150)) for i in province] '''百度地图''' bmap = ( BMap() .add_schema(baidu_ak="FAKE_AK", center=[120.13066322374, 30.240018034923]) .add("", data) ) bmap.render_notebook()

3|0其他图


3|1饼图


cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data = [123, 153, 89, 107, 98, 23] '''饼图''' pie = (Pie() .add('', [list(z) for z in zip(cate, data)]) ) pie.render_notebook()

3|2漏斗图


cate = ['访问', '注册', '加入购物车', '提交订单', '付款成功'] data = [30398, 15230, 10045, 3109, 1698] '''漏斗图''' funnel = (Funnel() .add('', [list(z) for z in zip(cate, data)]) ) funnel.render_notebook()

3|3仪表图


'''仪表图''' gauge = (Gauge() .add('', [('转化率', 74)]) ) gauge.render_notebook()

3|4水球图


'''水球图''' liqiud = (Liquid() .add('', [0.52, 0.44, 0.04, 0.02]) ) liqiud.render_notebook()

3|5日历图


begin = datetime.date(2019, 1, 1) end = datetime.date(2019, 12, 31) data = [[str(begin + datetime.timedelta(days=i)), abs(math.cos(i/100))* random.randint(100, 120)] for i in range((end - begin).days + 1)] '''日历图''' calendar = (Calendar() .add('', data, calendar_opts=opts.CalendarOpts(range_='2019')) ) calendar.render_notebook()

3|6关系图


nodes = [ {"name": "结点1", "symbolSize": 1}, {"name": "结点2", "symbolSize": 2}, {"name": "结点3", "symbolSize": 3}, {"name": "结点4", "symbolSize": 4}, {"name": "结点5", "symbolSize": 5}, {"name": "结点6", "symbolSize": 6}, {"name": "结点7", "symbolSize": 7}, {"name": "结点8", "symbolSize": 8}, ] links = [{'source': '结点1', 'target': '结点2'}, {'source': '结点1', 'target': '结点3'}, {'source': '结点1', 'target': '结点4'}, {'source': '结点2', 'target': '结点1'}, {'source': '结点3', 'target': '结点4'}, {'source': '结点3', 'target': '结点5'}, {'source': '结点3', 'target': '结点6'}, {'source': '结点4', 'target': '结点1'}, {'source': '结点4', 'target': '结点2'}, {'source': '结点4', 'target': '结点7'}, {'source': '结点4', 'target': '结点8'}, {'source': '结点5', 'target': '结点1'}, {'source': '结点5', 'target': '结点4'}, {'source': '结点5', 'target': '结点6'}, {'source': '结点5', 'target': '结点7'}, {'source': '结点5', 'target': '结点8'}, {'source': '结点6', 'target': '结点1'}, {'source': '结点6', 'target': '结点7'}, {'source': '结点6', 'target': '结点8'}, {'source': '结点7', 'target': '结点1'}, {'source': '结点7', 'target': '结点2'}, {'source': '结点7', 'target': '结点8'}, {'source': '结点8', 'target': '结点1'}, {'source': '结点8', 'target': '结点2'}, {'source': '结点8', 'target': '结点3'}, ] '''关系图''' graph = (Graph() .add('', nodes, links) ) graph.render_notebook()

3|7平行坐标系


data = [ ['一班', 78, 91, 123, 78, 82, 67, "优秀"], ['二班', 89, 101, 127, 88, 86, 75, "良好"], ['三班', 86, 93, 101, 84, 90, 73, "合格"], ] '''平行坐标系''' parallel = (Parallel() .add_schema([ opts.ParallelAxisOpts( dim=0, name='班级', type_='category', data=["一班", "二班", "三班"], ), opts.ParallelAxisOpts(dim=1, name='英语'), opts.ParallelAxisOpts(dim=2, name="数学"), opts.ParallelAxisOpts(dim=3, name="语文"), opts.ParallelAxisOpts(dim=4, name="物理"), opts.ParallelAxisOpts(dim=5, name="生物"), opts.ParallelAxisOpts(dim=6, name="化学"), opts.ParallelAxisOpts( dim=7, name="评级", type_="category", data=["优秀", "良好", "合格"], ), ]) .add('', data) ) parallel.render_notebook()

3|8极坐标


cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data = [123, 153, 89, 107, 98, 23] '''极坐标''' polar=( Polar() .add_schema( radiusaxis_opts=opts.RadiusAxisOpts(data=cate) ) .add('', data, type_='bar') ) polar.render_notebook()

3|9雷达图


data = [ [78, 91, 123, 78, 82, 67], [89, 101, 127, 88, 86, 75], [86, 93, 101, 84, 90, 73], ] '''雷达图''' radar = ( Radar() .add_schema( schema=[ opts.RadarIndicatorItem(name='语文', max_=150), opts.RadarIndicatorItem(name="数学", max_=150), opts.RadarIndicatorItem(name="英语", max_=150), opts.RadarIndicatorItem(name="物理", max_=100), opts.RadarIndicatorItem(name="生物", max_=100), opts.RadarIndicatorItem(name="化学", max_=100), ] ) .add('', data) ) radar.render_notebook()

3|10旭日图


data = [ {"name": "湖南", "children": [ {"name": "长沙", "children": [ {"name": "雨花区", "value": 55}, {"name": "岳麓区", "value": 34}, {"name": "天心区", "value": 144}, ]}, {"name": "常德", "children": [ {"name": "武陵区", "value": 156}, {"name": "鼎城区", "value": 134}, ]}, {"name": "湘潭", "value": 87}, {"name": "株洲", "value": 23}, ], }, {"name": "湖北", "children": [ {"name": "武汉", "children": [ {"name": "洪山区", "value": 55}, {"name": "东湖高新", "value": 78}, {"name": "江夏区", "value": 34}, ]}, {"name": "鄂州", "value": 67}, {"name": "襄阳", "value": 34}, ], }, {"name": "北京", "value": 235} ] '''旭日图''' sunburst = ( Sunburst() .add('', data_pair=data) ) sunburst.render_notebook()

3|11桑基图


nodes = [ {"name": "访问"}, {"name": "注册"}, {"name": "付费"}, {"name": "离开"}, ] links = [ {"source": "访问", "target": "注册", "value": 50}, {"source": "注册", "target": "付费", "value": 10}, {"source": "注册", "target": "离开", "value": 20}, ] '''桑基图''' sankey=( Sankey() .add('', nodes, links) ) sankey.render_notebook()

3|12河流图


cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] date_list = ["2020/4/{}".format(i + 1) for i in range(30)] data = [[day, random.randint(10, 50), c] for day in date_list for c in cate] '''河流图''' river = ( ThemeRiver() .add( series_name=cate, data=data, singleaxis_opts=opts.SingleAxisOpts(type_='time') ) ) river.render_notebook()

3|13词云图


words = [ ('Hichens', 600), ("hey", 230), ("jude", 124), ("dont", 436), ("make", 255), ("it", 247), ("bad", 244), ("Take", 138), ("a sad song", 184), ("and", 12), ("make", 165), ("it", 247), ("better", 182), ("remember", 255), ("to", 150), ("let", 162), ("her", 266), ("into", 60), ("your", 82), ("heart", 173), ("then", 365), ("you", 360), ("can", 282), ("start", 273), ("make", 265), ('LJ', 600), ] '''词云图''' wc = ( WordCloud() .add('', words) ) wc.render_notebook()

data = [ {"name": "湖南", "children": [ {"name": "长沙", "children": [ {"name": "雨花区", "value": 55}, {"name": "岳麓区", "value": 34}, {"name": "天心区", "value": 144}, ]}, {"name": "常德", "children": [ {"name": "武陵区", "value": 156}, {"name": "鼎城区", "value": 134}, ]}, {"name": "湘潭", "value": 87}, {"name": "株洲", "value": 23}, ], } ] '''树状图''' tree = ( Tree() .add('', data) ) tree.render_notebook()

data = [ {"name": "湖南", "children": [ {"name": "长沙", "children": [ {"name": "雨花区", "value": 55}, {"name": "岳麓区", "value": 34}, {"name": "天心区", "value": 144}, ]}, {"name": "常德", "children": [ {"name": "武陵区", "value": 156}, {"name": "鼎城区", "value": 134}, ]}, {"name": "湘潭", "value": 87}, {"name": "株洲", "value": 23}, ], }, {"name": "湖北", "children": [ {"name": "武汉", "children": [ {"name": "洪山区", "value": 55}, {"name": "东湖高新", "value": 78}, {"name": "江夏区", "value": 34}, ]}, {"name": "鄂州", "value": 67}, {"name": "襄阳", "value": 34}, ], }, {"name": "北京", "value": 235} ] '''矩阵树图''' treemap = ( TreeMap() .add('', data) ) treemap.render_notebook()

3|14表格


headers = ["City name", "Area", "Population", "Annual Rainfall"] rows = [ ["Brisbane", 5905, 1857594, 1146.4], ["Adelaide", 1295, 1158259, 600.5], ["Darwin", 112, 120900, 1714.7], ["Hobart", 1357, 205556, 619.5], ["Sydney", 2058, 4336374, 1214.8], ["Melbourne", 1566, 3806092, 646.9], ["Perth", 5386, 1554769, 869.4], ] '''表格''' from pyecharts.components import Table table = ( Table() .add(headers, rows) ) table.render_notebook()

4|03D图


4|13D散点图


data = [(random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)) for _ in range(100)] '''3D散点图''' scatter3D = ( Scatter3D() .add('', data) ) scatter3D.render_notebook()

4|23D折线图


data = [] for t in range(0, 1000): x = math.cos(t/10) y = math.sin(t/10) z = t/10 data.append([x, y, z]) '''3D折线图''' line3D = ( Line3D() .add('', data, xaxis3d_opts=opts.Axis3DOpts(type_='value'), yaxis3d_opts=opts.Axis3DOpts(type_='value') ) ) line3D.render_notebook()

4|33D直方图


data = [[i, j, random.randint(0, 100)] for i in range(24) for j in range(7)] hour_list = [str(i) for i in range(24)] week_list = ['周日', '周一', '周二', '周三', '周四', '周五', '周六'] '''3D直方图''' bar3D = ( Bar3D() .add( '', data, xaxis3d_opts=opts.Axis3DOpts(hour_list, type_='category'), yaxis3d_opts=opts.Axis3DOpts(week_list, type_='category'), zaxis3d_opts=opts.Axis3DOpts(type_='value'), ) ) bar3D.render_notebook()

4|43D地图


province = [ '广东', '湖北', '湖南', '四川', '重庆', '黑龙江', '浙江', '山西', '河北', '安徽', '河南', '山东', '西藏'] data = [(i, random.randint(50, 150)) for i in province] '''3D地图''' map3D = ( Map3D() .add('', data_pair=data, maptype='china') ) map3D.render_notebook()

4|53D地球


'''3D地球''' from pyecharts.faker import POPULATION mapglobe = ( MapGlobe() .add_schema() .add( series_name='', maptype='world', data_pair=POPULATION[1:] ) ) mapglobe.render_notebook()


__EOF__

作  者Hichens
出  处https://www.cnblogs.com/hichens/p/13531749.html
关于博主:莫得感情的浅度学习机器人
版权声明:@Hichens
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!

posted @   hichens  阅读(827)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示