Pandas索引

第2章 索引

import numpy as np
import pandas as pd
df = pd.read_csv('data/table.csv',index_col='ID')
df.head()
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1102 S_1 C_1 F street_2 192 73 32.5 B+
1103 S_1 C_1 M street_2 186 82 87.2 B+
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+

一、单级索引

1. loc方法、iloc方法、[]操作符

最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性,各有特点

(a)loc方法

① 单行索引:

df.loc[1103]
School          S_1
Class           C_1
Gender            M
Address    street_2
Height          186
Weight           82
Math           87.2
Physics          B+
Name: 1103, dtype: object

② 多行索引:

df.loc[[1102,2304]]
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192 73 32.5 B+
2304 S_2 C_3 F street_6 164 81 95.5 A-

(注意:所有在loc中使用的切片全部包含右端点!这是因为如果作为Pandas的使用者,那么肯定不太关心最后一个标签再往后一位是什么,但是如果是左闭右开,那么就很麻烦,先要知道再后面一列的名字是什么,非常不方便,因此Pandas中将loc设计为左右全闭)

df.loc[1304:2103].head() 
School Class Gender Address Height Weight Math Physics
ID
1304 S_1 C_3 M street_2 195 70 85.2 A
1305 S_1 C_3 F street_5 187 69 61.7 B-
2101 S_2 C_1 M street_7 174 84 83.3 C
2102 S_2 C_1 F street_6 161 61 50.6 B+
2103 S_2 C_1 M street_4 157 61 52.5 B-
df.loc[2402::-1].head()
School Class Gender Address Height Weight Math Physics
ID
2402 S_2 C_4 M street_7 166 82 48.7 B
2401 S_2 C_4 F street_2 192 62 45.3 A
2305 S_2 C_3 M street_4 187 73 48.9 B
2304 S_2 C_3 F street_6 164 81 95.5 A-
2303 S_2 C_3 F street_7 190 99 65.9 C

③ 单列索引:

df.loc[:,'Height'].head() 
ID
1101    173
1102    192
1103    186
1104    167
1105    159
Name: Height, dtype: int64

④ 多列索引:

df.loc[:,['Height','Math']].head()
Height Math
ID
1101 173 34.0
1102 192 32.5
1103 186 87.2
1104 167 80.4
1105 159 84.8
df.loc[:,'Height':'Math'].head()
Height Weight Math
ID
1101 173 63 34.0
1102 192 73 32.5
1103 186 82 87.2
1104 167 81 80.4
1105 159 64 84.8

⑤ 联合索引:

df.loc[1102:2401:3,'Height':'Math'].head()
Height Weight Math
ID
1102 192 73 32.5
1105 159 64 84.8
1203 160 53 58.8
1301 161 68 31.5
1304 195 70 85.2

⑥ 函数式索引:

df.loc[lambda x:x['Gender']=='M'].head()
#loc中使用的函数,传入参数就是前面的df
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1103 S_1 C_1 M street_2 186 82 87.2 B+
1201 S_1 C_2 M street_5 188 68 97.0 A-
1203 S_1 C_2 M street_6 160 53 58.8 A+
1301 S_1 C_3 M street_4 161 68 31.5 B+
#这里的例子表示,loc中能够传入函数,并且函数的输入值是整张表,输出为标量、切片、合法列表(元素出现在索引中)、合法索引
def f(x):
    return [1101,1103]
df.loc[f]
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1103 S_1 C_1 M street_2 186 82 87.2 B+

⑦ 布尔索引(将重点在第2节介绍)

df.loc[df['Address'].isin(['street_7','street_4'])].head()
School Class Gender Address Height Weight Math Physics
ID
1105 S_1 C_1 F street_4 159 64 84.8 B+
1202 S_1 C_2 F street_4 176 94 63.5 B-
1301 S_1 C_3 M street_4 161 68 31.5 B+
1303 S_1 C_3 M street_7 188 82 49.7 B
2101 S_2 C_1 M street_7 174 84 83.3 C
df.loc[[True if i[-1]=='4' or i[-1]=='7' else False for i in df['Address'].values]].head()
School Class Gender Address Height Weight Math Physics
ID
1105 S_1 C_1 F street_4 159 64 84.8 B+
1202 S_1 C_2 F street_4 176 94 63.5 B-
1301 S_1 C_3 M street_4 161 68 31.5 B+
1303 S_1 C_3 M street_7 188 82 49.7 B
2101 S_2 C_1 M street_7 174 84 83.3 C

小节:本质上说,loc中能传入的只有布尔列表和索引子集构成的列表,只要把握这个原则就很容易理解上面那些操作

(b)iloc方法(注意与loc不同,切片右端点不包含)

① 单行索引:

df.iloc[3]
School          S_1
Class           C_1
Gender            F
Address    street_2
Height          167
Weight           81
Math           80.4
Physics          B-
Name: 1104, dtype: object

② 多行索引:

df.iloc[3:5]
School Class Gender Address Height Weight Math Physics
ID
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+

③ 单列索引:

df.iloc[:,3].head()
ID
1101    street_1
1102    street_2
1103    street_2
1104    street_2
1105    street_4
Name: Address, dtype: object

④ 多列索引:

df.iloc[:,7::-2].head()
Physics Weight Address Class
ID
1101 A+ 63 street_1 C_1
1102 B+ 73 street_2 C_1
1103 B+ 82 street_2 C_1
1104 B- 81 street_2 C_1
1105 B+ 64 street_4 C_1

⑤ 混合索引:

df.iloc[3::4,7::-2].head()
Physics Weight Address Class
ID
1104 B- 81 street_2 C_1
1203 A+ 53 street_6 C_2
1302 A- 57 street_1 C_3
2101 C 84 street_7 C_1
2105 A 81 street_4 C_1

⑥ 函数式索引:

df.iloc[lambda x:[3]].head()
School Class Gender Address Height Weight Math Physics
ID
1104 S_1 C_1 F street_2 167 81 80.4 B-

小节:iloc中接收的参数只能为整数或整数列表或布尔列表,不能使用布尔Series,如果要用就必须如下把values拿出来

#df.iloc[df['School']=='S_1'].head() #报错
df.iloc[(df['School']=='S_1').values].head()
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1102 S_1 C_1 F street_2 192 73 32.5 B+
1103 S_1 C_1 M street_2 186 82 87.2 B+
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+

(c) []操作符

(c.1)Series的[]操作

① 单元素索引:

s = pd.Series(df['Math'],index=df.index)
s[1101]
#使用的是索引标签
34.0

② 多行索引:

s[0:4]
#使用的是绝对位置的整数切片,与元素无关,这里容易混淆
ID
1101    34.0
1102    32.5
1103    87.2
1104    80.4
Name: Math, dtype: float64

③ 函数式索引:

s[lambda x: x.index[16::-6]]
#注意使用lambda函数时,直接切片(如:s[lambda x: 16::-6])就报错,此时使用的不是绝对位置切片,而是元素切片,非常易错
ID
2102    50.6
1301    31.5
1105    84.8
Name: Math, dtype: float64

④ 布尔索引:

s[s>80]
ID
1103    87.2
1104    80.4
1105    84.8
1201    97.0
1302    87.7
1304    85.2
2101    83.3
2205    85.4
2304    95.5
Name: Math, dtype: float64

【注意】如果不想陷入困境,请不要在行索引为浮点时使用[]操作符,因为在Series中[]的浮点切片并不是进行位置比较,而是值比较,非常特殊

s_int = pd.Series([1,2,3,4],index=[1,3,5,6])
s_float = pd.Series([1,2,3,4],index=[1.,3.,5.,6.])
s_int
1    1
3    2
5    3
6    4
dtype: int64
s_int[2:]
5    3
6    4
dtype: int64
s_float
1.0    1
3.0    2
5.0    3
6.0    4
dtype: int64
#注意和s_int[2:]结果不一样了,因为2这里是元素而不是位置
s_float[2:]
3.0    2
5.0    3
6.0    4
dtype: int64

(c.2)DataFrame的[]操作

① 单行索引:

df[1:2]
#这里非常容易写成df['label'],会报错
#同Series使用了绝对位置切片
#如果想要获得某一个元素,可用如下get_loc方法:
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192 73 32.5 B+
row = df.index.get_loc(1102)
df[row:row+1]
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192 73 32.5 B+

② 多行索引:

#用切片,如果是选取指定的某几行,推荐使用loc,否则很可能报错
df[3:5]
School Class Gender Address Height Weight Math Physics
ID
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+

③ 单列索引:

df['School'].head()
ID
1101    S_1
1102    S_1
1103    S_1
1104    S_1
1105    S_1
Name: School, dtype: object

④ 多列索引:

df[['School','Math']].head()
School Math
ID
1101 S_1 34.0
1102 S_1 32.5
1103 S_1 87.2
1104 S_1 80.4
1105 S_1 84.8

⑤函数式索引:

df[lambda x:['Math','Physics']].head()
Math Physics
ID
1101 34.0 A+
1102 32.5 B+
1103 87.2 B+
1104 80.4 B-
1105 84.8 B+

⑥ 布尔索引:

df[df['Gender']=='F'].head()
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192 73 32.5 B+
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+
1202 S_1 C_2 F street_4 176 94 63.5 B-
1204 S_1 C_2 F street_5 162 63 33.8 B

小节:一般来说,[]操作符常用于列选择或布尔选择,尽量避免行的选择

2. 布尔索引

(a)布尔符号:'&','|','~':分别代表和and,或or,取反not

df[(df['Gender']=='F')&(df['Address']=='street_2')].head()
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192 73 32.5 B+
1104 S_1 C_1 F street_2 167 81 80.4 B-
2401 S_2 C_4 F street_2 192 62 45.3 A
2404 S_2 C_4 F street_2 160 84 67.7 B
df[(df['Math']>85)|(df['Address']=='street_7')].head()
School Class Gender Address Height Weight Math Physics
ID
1103 S_1 C_1 M street_2 186 82 87.2 B+
1201 S_1 C_2 M street_5 188 68 97.0 A-
1302 S_1 C_3 F street_1 175 57 87.7 A-
1303 S_1 C_3 M street_7 188 82 49.7 B
1304 S_1 C_3 M street_2 195 70 85.2 A
df[~((df['Math']>75)|(df['Address']=='street_1'))].head()
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192 73 32.5 B+
1202 S_1 C_2 F street_4 176 94 63.5 B-
1203 S_1 C_2 M street_6 160 53 58.8 A+
1204 S_1 C_2 F street_5 162 63 33.8 B
1205 S_1 C_2 F street_6 167 63 68.4 B-

loc和[]中相应位置都能使用布尔列表选择:

df.loc[df['Math']>60,df.columns=='Physics'].head()
#思考:为什么df.loc[df['Math']>60,(df[:8]['Address']=='street_6').values].head()得到和上述结果一样?values能去掉吗?
Physics
ID
1103 B+
1104 B-
1105 B+
1201 A-
1202 B-

(b) isin方法

df[df['Address'].isin(['street_1','street_4'])&df['Physics'].isin(['A','A+'])]
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
2105 S_2 C_1 M street_4 170 81 34.2 A
2203 S_2 C_2 M street_4 155 91 73.8 A+
#上面也可以用字典方式写:
df[df[['Address','Physics']].isin({'Address':['street_1','street_4'],'Physics':['A','A+']}).all(1)]
#all与&的思路是类似的,其中的1代表按照跨列方向判断是否全为True
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
2105 S_2 C_1 M street_4 170 81 34.2 A
2203 S_2 C_2 M street_4 155 91 73.8 A+

3. 快速标量索引

当只需要取一个元素时,at和iat方法能够提供更快的实现:

display(df.at[1101,'School'])
display(df.loc[1101,'School'])
display(df.iat[0,0])
display(df.iloc[0,0])
#可尝试去掉注释对比时间
#%timeit df.at[1101,'School']
#%timeit df.loc[1101,'School']
#%timeit df.iat[0,0]
#%timeit df.iloc[0,0]
'S_1'



'S_1'



'S_1'



'S_1'

4. 区间索引

此处介绍并不是说只能在单级索引中使用区间索引,只是作为一种特殊类型的索引方式,在此处先行介绍

(a)利用interval_range方法

pd.interval_range(start=0,end=5)
#closed参数可选'left''right''both''neither',默认左开右闭
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
              closed='right',
              dtype='interval[int64]')
pd.interval_range(start=0,periods=8,freq=5)
#periods参数控制区间个数,freq控制步长
IntervalIndex([(0, 5], (5, 10], (10, 15], (15, 20], (20, 25], (25, 30], (30, 35], (35, 40]],
              closed='right',
              dtype='interval[int64]')

(b)利用cut将数值列转为区间为元素的分类变量,例如统计数学成绩的区间情况:

math_interval = pd.cut(df['Math'],bins=[0,40,60,80,100])
#注意,如果没有类型转换,此时并不是区间类型,而是category类型
math_interval.head()
ID
1101      (0, 40]
1102      (0, 40]
1103    (80, 100]
1104    (80, 100]
1105    (80, 100]
Name: Math, dtype: category
Categories (4, interval[int64]): [(0, 40] < (40, 60] < (60, 80] < (80, 100]]

(c)区间索引的选取

df_i = df.join(math_interval,rsuffix='_interval')[['Math','Math_interval']]\
            .reset_index().set_index('Math_interval')
df_i.head()
ID Math
Math_interval
(0, 40] 1101 34.0
(0, 40] 1102 32.5
(80, 100] 1103 87.2
(80, 100] 1104 80.4
(80, 100] 1105 84.8
df_i.loc[65].head()
#包含该值就会被选中
ID Math
Math_interval
(60, 80] 1202 63.5
(60, 80] 1205 68.4
(60, 80] 1305 61.7
(60, 80] 2104 72.2
(60, 80] 2202 68.5
df_i.loc[[65,90]].head()
ID Math
Math_interval
(60, 80] 1202 63.5
(60, 80] 1205 68.4
(60, 80] 1305 61.7
(60, 80] 2104 72.2
(60, 80] 2202 68.5

如果想要选取某个区间,先要把分类变量转为区间变量,再使用overlap方法:

#df_i.loc[pd.Interval(70,75)].head() 报错
df_i[df_i.index.astype('interval').overlaps(pd.Interval(70, 85))].head()
#只要索引与(70,85]这个区间有交集就会被选中,注意pd.Interval默认构造区间都是左开右闭,可选closed参数right,left,both,neither
ID Math
Math_interval
(80, 100] 1103 87.2
(80, 100] 1104 80.4
(80, 100] 1105 84.8
(80, 100] 1201 97.0
(60, 80] 1202 63.5

二、多级索引

1. 创建多级索引

(a)通过from_tuple或from_arrays

① 直接创建元组

tuples = [('A','a'),('A','b'),('B','a'),('B','b')]
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
mul_index
MultiIndex([('A', 'a'),
            ('A', 'b'),
            ('B', 'a'),
            ('B', 'b')],
           names=['Upper', 'Lower'])
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
Score
Upper Lower
A a perfect
b good
B a fair
b bad

② 利用zip创建元组

L1 = list('AABB')
L2 = list('abab')
tuples = list(zip(L1,L2))
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
Score
Upper Lower
A a perfect
b good
B a fair
b bad

③ 通过Array创建

arrays = [['A','a'],['A','b'],['B','a'],['B','b']]
mul_index = pd.MultiIndex.from_tuples(arrays, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
Score
Upper Lower
A a perfect
b good
B a fair
b bad
mul_index
#由此看出内部自动转成元组
MultiIndex([('A', 'a'),
            ('A', 'b'),
            ('B', 'a'),
            ('B', 'b')],
           names=['Upper', 'Lower'])

(b)通过from_product

L1 = ['A','B']
L2 = ['a','b']
pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
#两两相乘
MultiIndex([('A', 'a'),
            ('A', 'b'),
            ('B', 'a'),
            ('B', 'b')],
           names=['Upper', 'Lower'])

(c)指定df中的列创建(set_index方法)

df_using_mul = df.set_index(['Class','Address'])
df_using_mul.head()
School Gender Height Weight Math Physics
Class Address
C_1 street_1 S_1 M 173 63 34.0 A+
street_2 S_1 F 192 73 32.5 B+
street_2 S_1 M 186 82 87.2 B+
street_2 S_1 F 167 81 80.4 B-
street_4 S_1 F 159 64 84.8 B+

2. 多层索引切片

df_using_mul.head()
School Gender Height Weight Math Physics
Class Address
C_1 street_1 S_1 M 173 63 34.0 A+
street_2 S_1 F 192 73 32.5 B+
street_2 S_1 M 186 82 87.2 B+
street_2 S_1 F 167 81 80.4 B-
street_4 S_1 F 159 64 84.8 B+

(a)一般切片

#df_using_mul.loc['C_2','street_5']
#当索引不排序时,单个索引会报出性能警告
#df_using_mul.index.is_lexsorted()
#该函数检查是否排序
df_using_mul.sort_index().loc['C_2','street_5']
#df_using_mul.sort_index().index.is_lexsorted()
School Gender Height Weight Math Physics
Class Address
C_2 street_5 S_1 M 188 68 97.0 A-
street_5 S_1 F 162 63 33.8 B
street_5 S_2 M 193 100 39.1 B
#df_using_mul.loc[('C_2','street_5'):] 报错
#当不排序时,不能使用多层切片
df_using_mul.sort_index().loc[('C_2','street_6'):('C_3','street_4')]
#注意此处由于使用了loc,因此仍然包含右端点
School Gender Height Weight Math Physics
Class Address
C_2 street_6 S_1 M 160 53 58.8 A+
street_6 S_1 F 167 63 68.4 B-
street_7 S_2 F 194 77 68.5 B+
street_7 S_2 F 183 76 85.4 B
C_3 street_1 S_1 F 175 57 87.7 A-
street_2 S_1 M 195 70 85.2 A
street_4 S_1 M 161 68 31.5 B+
street_4 S_2 F 157 78 72.3 B+
street_4 S_2 M 187 73 48.9 B
df_using_mul.sort_index().loc[('C_2','street_7'):'C_3'].head()
#非元组也是合法的,表示选中该层所有元素
School Gender Height Weight Math Physics
Class Address
C_2 street_7 S_2 F 194 77 68.5 B+
street_7 S_2 F 183 76 85.4 B
C_3 street_1 S_1 F 175 57 87.7 A-
street_2 S_1 M 195 70 85.2 A
street_4 S_1 M 161 68 31.5 B+

(b)第一类特殊情况:由元组构成列表

df_using_mul.sort_index().loc[[('C_2','street_7'),('C_3','street_2')]]
#表示选出某几个元素,精确到最内层索引
School Gender Height Weight Math Physics
Class Address
C_2 street_7 S_2 F 194 77 68.5 B+
street_7 S_2 F 183 76 85.4 B
C_3 street_2 S_1 M 195 70 85.2 A

(c)第二类特殊情况:由列表构成元组

df_using_mul.sort_index().loc[(['C_2','C_3'],['street_4','street_7']),:]
#选出第一层在‘C_2’和'C_3'中且第二层在'street_4'和'street_7'中的行
School Gender Height Weight Math Physics
Class Address
C_2 street_4 S_1 F 176 94 63.5 B-
street_4 S_2 M 155 91 73.8 A+
street_7 S_2 F 194 77 68.5 B+
street_7 S_2 F 183 76 85.4 B
C_3 street_4 S_1 M 161 68 31.5 B+
street_4 S_2 F 157 78 72.3 B+
street_4 S_2 M 187 73 48.9 B
street_7 S_1 M 188 82 49.7 B
street_7 S_2 F 190 99 65.9 C

3. 多层索引中的slice对象

L1,L2 = ['A','B'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_s = pd.DataFrame(np.random.rand(6,9),index=mul_index1,columns=mul_index2)
df_s
Big D E F
Small d e f d e f d e f
Upper Lower
A a 0.903231 0.347113 0.613984 0.855879 0.837101 0.819969 0.583898 0.129336 0.681962
b 0.020348 0.409778 0.594827 0.854630 0.087908 0.499946 0.554276 0.721452 0.538893
c 0.411393 0.028585 0.901497 0.500408 0.354749 0.308252 0.319632 0.772193 0.120076
B a 0.201583 0.480175 0.423258 0.239614 0.381462 0.849265 0.380623 0.286677 0.449948
b 0.191132 0.787541 0.325968 0.546501 0.076944 0.764933 0.727802 0.656632 0.771932
c 0.830845 0.053417 0.530750 0.699251 0.435809 0.504183 0.289220 0.310385 0.046243
idx=pd.IndexSlice

IndexSlice本质上是对多个Slice对象的包装

idx[1:9:2,'A':'C','start':'end':2]
(slice(1, 9, 2), slice('A', 'C', None), slice('start', 'end', 2))

索引Slice可以与loc一起完成切片操作,主要有两种用法

(a)loc[idx[*,*]]型

第一个星号表示行,第二个表示列,且使用布尔索引时,需要索引对齐

#例子1
df_s.loc[idx['B':,df_s.iloc[0]>0.6]]
#df_s.loc[idx['B':,df_s.iloc[:,0]>0.6]] #索引没有对齐报错
Big D E F
Small d f d e f f
Upper Lower
B a 0.201583 0.423258 0.239614 0.381462 0.849265 0.449948
b 0.191132 0.325968 0.546501 0.076944 0.764933 0.771932
c 0.830845 0.530750 0.699251 0.435809 0.504183 0.046243
#例子2
df_s.loc[idx[df_s.iloc[:,0]>0.6,:('E','f')]]
Big D E
Small d e f d e f
Upper Lower
A a 0.903231 0.347113 0.613984 0.855879 0.837101 0.819969
B c 0.830845 0.053417 0.530750 0.699251 0.435809 0.504183

(b)loc[idx[*,*],idx[*,*]]型

这里与上面的区别在于(a)中的loc是没有逗号隔开的,但(b)是用逗号隔开,前面一个idx表示行索引,后面一个idx为列索引

这种用法非常灵活,因此多举几个例子方便理解

#例子1
df_s.loc[idx['A'],idx['D':]]
#后面的层出现,则前面的层必须出现
#df_s.loc[idx['a'],idx['D':]] #报错
Big D E F
Small d e f d e f d e f
Lower
a 0.903231 0.347113 0.613984 0.855879 0.837101 0.819969 0.583898 0.129336 0.681962
b 0.020348 0.409778 0.594827 0.854630 0.087908 0.499946 0.554276 0.721452 0.538893
c 0.411393 0.028585 0.901497 0.500408 0.354749 0.308252 0.319632 0.772193 0.120076
#例子2
df_s.loc[idx[:'B','b':],:] #举这个例子是为了说明①可以在相应level使用切片②某一个idx可以用:代替表示全选
Big D E F
Small d e f d e f d e f
Upper Lower
A b 0.020348 0.409778 0.594827 0.854630 0.087908 0.499946 0.554276 0.721452 0.538893
c 0.411393 0.028585 0.901497 0.500408 0.354749 0.308252 0.319632 0.772193 0.120076
B b 0.191132 0.787541 0.325968 0.546501 0.076944 0.764933 0.727802 0.656632 0.771932
c 0.830845 0.053417 0.530750 0.699251 0.435809 0.504183 0.289220 0.310385 0.046243
#例子3
df_s.iloc[:,0]>0.6
Upper  Lower
A      a         True
       b        False
       c        False
B      a        False
       b        False
       c         True
Name: (D, d), dtype: bool
df_s.loc[idx[:'B',df_s.iloc[:,0]>0.6],:] #这个例子表示相应位置还可以使用布尔索引
Big D E F
Small d e f d e f d e f
Upper Lower
A a 0.903231 0.347113 0.613984 0.855879 0.837101 0.819969 0.583898 0.129336 0.681962
B c 0.830845 0.053417 0.530750 0.699251 0.435809 0.504183 0.289220 0.310385 0.046243
#例子4
#特别要注意,(b)中的布尔索引是可以索引不对齐的,只需要长度一样,比如下面这个例子
df_s.loc[idx[:'B',(df_s.iloc[0]>0.6)[:6]],:]
Big D E F
Small d e f d e f d e f
Upper Lower
A a 0.903231 0.347113 0.613984 0.855879 0.837101 0.819969 0.583898 0.129336 0.681962
c 0.411393 0.028585 0.901497 0.500408 0.354749 0.308252 0.319632 0.772193 0.120076
B a 0.201583 0.480175 0.423258 0.239614 0.381462 0.849265 0.380623 0.286677 0.449948
b 0.191132 0.787541 0.325968 0.546501 0.076944 0.764933 0.727802 0.656632 0.771932
c 0.830845 0.053417 0.530750 0.699251 0.435809 0.504183 0.289220 0.310385 0.046243
#例子5
df_s.loc[idx[:'B','c':,(df_s.iloc[:,0]>0.6)],:]
#idx中层数k1大于df层数k2时,idx前k2个参数若相应位置是元素或者元素切片,则表示相应df层的元素筛选,同时也可以选择用同长度bool序列
#idx后面多出来的参数只能选择同bool序列,这样设计的目的是可以将元素筛选和条件筛选同时运用
Big D E F
Small d e f d e f d e f
Upper Lower
B c 0.830845 0.053417 0.53075 0.699251 0.435809 0.504183 0.28922 0.310385 0.046243
#例子6
df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),(df_s.iloc[:,0]>0.6)],:] #这个就不是元素筛选而是条件筛选
#df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),'c',:]] #报错
#df_s.loc[idx[:'c','B',(df_s.iloc[:,0]>0.6),:]] #报错
Big D E F
Small d e f d e f d e f
Upper Lower
A a 0.903231 0.347113 0.613984 0.855879 0.837101 0.819969 0.583898 0.129336 0.681962
B c 0.830845 0.053417 0.530750 0.699251 0.435809 0.504183 0.289220 0.310385 0.046243

4. 索引层的交换

(a)swaplevel方法(两层交换)

df_using_mul.head()
School Gender Height Weight Math Physics
Class Address
C_1 street_1 S_1 M 173 63 34.0 A+
street_2 S_1 F 192 73 32.5 B+
street_2 S_1 M 186 82 87.2 B+
street_2 S_1 F 167 81 80.4 B-
street_4 S_1 F 159 64 84.8 B+
df_using_mul.swaplevel(i=1,j=0,axis=0).sort_index().head()
School Gender Height Weight Math Physics
Address Class
street_1 C_1 S_1 M 173 63 34.0 A+
C_2 S_2 M 175 74 47.2 B-
C_3 S_1 F 175 57 87.7 A-
street_2 C_1 S_1 F 192 73 32.5 B+
C_1 S_1 M 186 82 87.2 B+

(b)reorder_levels方法(多层交换)

df_muls = df.set_index(['School','Class','Address'])
df_muls.head()
Gender Height Weight Math Physics
School Class Address
S_1 C_1 street_1 M 173 63 34.0 A+
street_2 F 192 73 32.5 B+
street_2 M 186 82 87.2 B+
street_2 F 167 81 80.4 B-
street_4 F 159 64 84.8 B+
df_muls.reorder_levels([2,0,1],axis=0).sort_index().head()
Gender Height Weight Math Physics
Address School Class
street_1 S_1 C_1 M 173 63 34.0 A+
C_3 F 175 57 87.7 A-
S_2 C_2 M 175 74 47.2 B-
street_2 S_1 C_1 F 192 73 32.5 B+
C_1 M 186 82 87.2 B+
#如果索引有name,可以直接使用name
df_muls.reorder_levels(['Address','School','Class'],axis=0).sort_index().head()
Gender Height Weight Math Physics
Address School Class
street_1 S_1 C_1 M 173 63 34.0 A+
C_3 F 175 57 87.7 A-
S_2 C_2 M 175 74 47.2 B-
street_2 S_1 C_1 F 192 73 32.5 B+
C_1 M 186 82 87.2 B+

三、索引设定

1. index_col参数

index_col是read_csv中的一个参数,而不是某一个方法:

pd.read_csv('data/table.csv',index_col=['Address','School']).head()
Class ID Gender Height Weight Math Physics
Address School
street_1 S_1 C_1 1101 M 173 63 34.0 A+
street_2 S_1 C_1 1102 F 192 73 32.5 B+
S_1 C_1 1103 M 186 82 87.2 B+
S_1 C_1 1104 F 167 81 80.4 B-
street_4 S_1 C_1 1105 F 159 64 84.8 B+

2. reindex和reindex_like

reindex是指重新索引,它的重要特性在于索引对齐,很多时候用于重新排序

df.head()
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1102 S_1 C_1 F street_2 192 73 32.5 B+
1103 S_1 C_1 M street_2 186 82 87.2 B+
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+
df.reindex(index=[1101,1203,1206,2402])
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173.0 63.0 34.0 A+
1203 S_1 C_2 M street_6 160.0 53.0 58.8 A+
1206 NaN NaN NaN NaN NaN NaN NaN NaN
2402 S_2 C_4 M street_7 166.0 82.0 48.7 B
df.reindex(columns=['Height','Gender','Average']).head()
Height Gender Average
ID
1101 173 M NaN
1102 192 F NaN
1103 186 M NaN
1104 167 F NaN
1105 159 F NaN

可以选择缺失值的填充方法:fill_value和method(bfill/ffill/nearest),其中method参数必须索引单调

df.reindex(index=[1101,1203,1206,2402],method='bfill')
#这里的单调是指df必须索引经过排序,否则报错
#bfill表示用所在索引1206的后一个有效行填充,ffill为前一个有效行,nearest是指最近的
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1203 S_1 C_2 M street_6 160 53 58.8 A+
1206 S_1 C_3 M street_4 161 68 31.5 B+
2402 S_2 C_4 M street_7 166 82 48.7 B
df.reindex(index=[1101,1203,1206,2402],method='nearest')
#数值上1205比1301更接近1206,因此用前者填充
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1203 S_1 C_2 M street_6 160 53 58.8 A+
1206 S_1 C_2 F street_6 167 63 68.4 B-
2402 S_2 C_4 M street_7 166 82 48.7 B

reindex_like的作用为生成一个横纵索引完全与参数列表一致的DataFrame,数据使用被调用的表

df_temp = pd.DataFrame({'Weight':np.zeros(5),
                        'Height':np.zeros(5),
                        'ID':[1101,1104,1103,1106,1102]}).set_index('ID')
df_temp.reindex_like(df[0:5][['Weight','Height']])
Weight Height
ID
1101 0.0 0.0
1102 0.0 0.0
1103 0.0 0.0
1104 0.0 0.0
1105 NaN NaN

如果df_temp单调还可以使用method参数:

df_temp = pd.DataFrame({'Weight':range(5),
                        'Height':range(5),
                        'ID':[1101,1104,1103,1106,1102]}).set_index('ID').sort_index()
df_temp.reindex_like(df[0:5][['Weight','Height']],method='bfill')
#可以自行检验这里的1105的值是否是由bfill规则填充
Weight Height
ID
1101 0 0
1102 4 4
1103 2 2
1104 1 1
1105 3 3

3. set_index和reset_index

先介绍set_index:从字面意思看,就是将某些列作为索引

使用表内列作为索引:

df.head()
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1102 S_1 C_1 F street_2 192 73 32.5 B+
1103 S_1 C_1 M street_2 186 82 87.2 B+
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+
df.set_index('Class').head()
School Gender Address Height Weight Math Physics
Class
C_1 S_1 M street_1 173 63 34.0 A+
C_1 S_1 F street_2 192 73 32.5 B+
C_1 S_1 M street_2 186 82 87.2 B+
C_1 S_1 F street_2 167 81 80.4 B-
C_1 S_1 F street_4 159 64 84.8 B+

利用append参数可以将当前索引维持不变

df.set_index('Class',append=True).head()
School Gender Address Height Weight Math Physics
ID Class
1101 C_1 S_1 M street_1 173 63 34.0 A+
1102 C_1 S_1 F street_2 192 73 32.5 B+
1103 C_1 S_1 M street_2 186 82 87.2 B+
1104 C_1 S_1 F street_2 167 81 80.4 B-
1105 C_1 S_1 F street_4 159 64 84.8 B+

当使用与表长相同的列作为索引(需要先转化为Series,否则报错):

df.set_index(pd.Series(range(df.shape[0]))).head()
School Class Gender Address Height Weight Math Physics
0 S_1 C_1 M street_1 173 63 34.0 A+
1 S_1 C_1 F street_2 192 73 32.5 B+
2 S_1 C_1 M street_2 186 82 87.2 B+
3 S_1 C_1 F street_2 167 81 80.4 B-
4 S_1 C_1 F street_4 159 64 84.8 B+

可以直接添加多级索引:

df.set_index([pd.Series(range(df.shape[0])),pd.Series(np.ones(df.shape[0]))]).head()
School Class Gender Address Height Weight Math Physics
0 1.0 S_1 C_1 M street_1 173 63 34.0 A+
1 1.0 S_1 C_1 F street_2 192 73 32.5 B+
2 1.0 S_1 C_1 M street_2 186 82 87.2 B+
3 1.0 S_1 C_1 F street_2 167 81 80.4 B-
4 1.0 S_1 C_1 F street_4 159 64 84.8 B+

下面介绍reset_index方法,它的主要功能是将索引重置

默认状态直接恢复到自然数索引:

df.reset_index().head()
ID School Class Gender Address Height Weight Math Physics
0 1101 S_1 C_1 M street_1 173 63 34.0 A+
1 1102 S_1 C_1 F street_2 192 73 32.5 B+
2 1103 S_1 C_1 M street_2 186 82 87.2 B+
3 1104 S_1 C_1 F street_2 167 81 80.4 B-
4 1105 S_1 C_1 F street_4 159 64 84.8 B+

用level参数指定哪一层被reset,用col_level参数指定set到哪一层:

L1,L2 = ['A','B','C'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_temp = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2)
df_temp.head()
Big D E F
Small d e f d e f d e f
Upper Lower
A a 0.077679 0.567787 0.665333 0.942349 0.531474 0.330951 0.882092 0.275882 0.650953
b 0.770243 0.313352 0.220805 0.027873 0.761497 0.119895 0.310588 0.198915 0.472835
c 0.160599 0.974000 0.929504 0.750928 0.097759 0.675912 0.686486 0.614004 0.167216
B a 0.968565 0.406914 0.173109 0.533618 0.014341 0.701709 0.704982 0.623265 0.677072
b 0.687038 0.017382 0.105115 0.025243 0.605660 0.349725 0.018865 0.078166 0.920426
df_temp1 = df_temp.reset_index(level=1,col_level=1)
df_temp1.head()
Big D E F
Small Lower d e f d e f d e f
Upper
A a 0.077679 0.567787 0.665333 0.942349 0.531474 0.330951 0.882092 0.275882 0.650953
A b 0.770243 0.313352 0.220805 0.027873 0.761497 0.119895 0.310588 0.198915 0.472835
A c 0.160599 0.974000 0.929504 0.750928 0.097759 0.675912 0.686486 0.614004 0.167216
B a 0.968565 0.406914 0.173109 0.533618 0.014341 0.701709 0.704982 0.623265 0.677072
B b 0.687038 0.017382 0.105115 0.025243 0.605660 0.349725 0.018865 0.078166 0.920426
df_temp1.columns
#看到的确插入了level2
MultiIndex([( '', 'Lower'),
            ('D',     'd'),
            ('D',     'e'),
            ('D',     'f'),
            ('E',     'd'),
            ('E',     'e'),
            ('E',     'f'),
            ('F',     'd'),
            ('F',     'e'),
            ('F',     'f')],
           names=['Big', 'Small'])
df_temp1.index
#最内层索引被移出
Index(['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C'], dtype='object', name='Upper')

4. rename_axis和rename

rename_axis是针对多级索引的方法,作用是修改某一层的索引名,而不是索引标签

df_temp.rename_axis(index={'Lower':'LowerLower'},columns={'Big':'BigBig'})
BigBig D E F
Small d e f d e f d e f
Upper LowerLower
A a 0.077679 0.567787 0.665333 0.942349 0.531474 0.330951 0.882092 0.275882 0.650953
b 0.770243 0.313352 0.220805 0.027873 0.761497 0.119895 0.310588 0.198915 0.472835
c 0.160599 0.974000 0.929504 0.750928 0.097759 0.675912 0.686486 0.614004 0.167216
B a 0.968565 0.406914 0.173109 0.533618 0.014341 0.701709 0.704982 0.623265 0.677072
b 0.687038 0.017382 0.105115 0.025243 0.605660 0.349725 0.018865 0.078166 0.920426
c 0.693014 0.931630 0.483892 0.384802 0.782509 0.162382 0.542573 0.315541 0.602177
C a 0.133081 0.769785 0.892641 0.122432 0.094235 0.638547 0.456789 0.749265 0.250103
b 0.526646 0.710174 0.754488 0.323552 0.290120 0.659110 0.325425 0.444771 0.168545
c 0.905280 0.490078 0.735828 0.574289 0.460427 0.755454 0.692325 0.571639 0.145983

rename方法用于修改列或者行索引标签,而不是索引名:

df_temp.rename(index={'A':'T'},columns={'e':'changed_e'}).head()
Big D E F
Small d changed_e f d changed_e f d changed_e f
Upper Lower
T a 0.077679 0.567787 0.665333 0.942349 0.531474 0.330951 0.882092 0.275882 0.650953
b 0.770243 0.313352 0.220805 0.027873 0.761497 0.119895 0.310588 0.198915 0.472835
c 0.160599 0.974000 0.929504 0.750928 0.097759 0.675912 0.686486 0.614004 0.167216
B a 0.968565 0.406914 0.173109 0.533618 0.014341 0.701709 0.704982 0.623265 0.677072
b 0.687038 0.017382 0.105115 0.025243 0.605660 0.349725 0.018865 0.078166 0.920426

四、常用索引型函数

1. where函数

当对条件为False的单元进行填充:

df.head()
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1102 S_1 C_1 F street_2 192 73 32.5 B+
1103 S_1 C_1 M street_2 186 82 87.2 B+
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+
df.where(df['Gender']=='M').head()
#不满足条件的行全部被设置为NaN
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173.0 63.0 34.0 A+
1102 NaN NaN NaN NaN NaN NaN NaN NaN
1103 S_1 C_1 M street_2 186.0 82.0 87.2 B+
1104 NaN NaN NaN NaN NaN NaN NaN NaN
1105 NaN NaN NaN NaN NaN NaN NaN NaN

通过这种方法筛选结果和[]操作符的结果完全一致:

df.where(df['Gender']=='M').dropna().head()
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173.0 63.0 34.0 A+
1103 S_1 C_1 M street_2 186.0 82.0 87.2 B+
1201 S_1 C_2 M street_5 188.0 68.0 97.0 A-
1203 S_1 C_2 M street_6 160.0 53.0 58.8 A+
1301 S_1 C_3 M street_4 161.0 68.0 31.5 B+

第一个参数为布尔条件,第二个参数为填充值:

df.where(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173.000000 63.000000 34.000000 A+
1102 0.804438 0.956796 0.182926 0.728754 0.810268 0.254977 0.635681 0.0883274
1103 S_1 C_1 M street_2 186.000000 82.000000 87.200000 B+
1104 0.216128 0.677674 0.290603 0.000361722 0.697820 0.679540 0.930052 0.290292
1105 0.478766 0.802287 0.745546 0.900654 0.749546 0.573542 0.108087 0.00666063

2. mask函数

mask函数与where功能上相反,其余完全一致,即对条件为True的单元进行填充

df.mask(df['Gender']=='M').dropna().head()
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192.0 73.0 32.5 B+
1104 S_1 C_1 F street_2 167.0 81.0 80.4 B-
1105 S_1 C_1 F street_4 159.0 64.0 84.8 B+
1202 S_1 C_2 F street_4 176.0 94.0 63.5 B-
1204 S_1 C_2 F street_5 162.0 63.0 33.8 B
df.mask(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
School Class Gender Address Height Weight Math Physics
ID
1101 0.682213 0.17613 0.81589 0.899976 0.779533 0.768027 0.824438 0.169901
1102 S_1 C_1 F street_2 192.000000 73.000000 32.500000 B+
1103 0.555236 0.758632 0.12173 0.374172 0.385267 0.264608 0.992286 0.00513714
1104 S_1 C_1 F street_2 167.000000 81.000000 80.400000 B-
1105 S_1 C_1 F street_4 159.000000 64.000000 84.800000 B+

3. query函数

df.head()
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1102 S_1 C_1 F street_2 192 73 32.5 B+
1103 S_1 C_1 M street_2 186 82 87.2 B+
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+

query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、and/not/or/&/|/~/not in/in/==/!=、四则运算符

df.query('(Address in ["street_6","street_7"])&(Weight>(70+10))&(ID in [1303,2304,2402])')
School Class Gender Address Height Weight Math Physics
ID
1303 S_1 C_3 M street_7 188 82 49.7 B
2304 S_2 C_3 F street_6 164 81 95.5 A-
2402 S_2 C_4 M street_7 166 82 48.7 B

五、重复元素处理

1. duplicated方法

该方法返回了是否重复的布尔列表

df.duplicated('Class').head()
ID
1101    False
1102     True
1103     True
1104     True
1105     True
dtype: bool

可选参数keep默认为first,即首次出现设为不重复,若为last,则最后一次设为不重复,若为False,则所有重复项为True

df.duplicated('Class',keep='last').tail()
ID
2401     True
2402     True
2403     True
2404     True
2405    False
dtype: bool
df.duplicated('Class',keep=False).head()
ID
1101    True
1102    True
1103    True
1104    True
1105    True
dtype: bool

2. drop_duplicates方法

从名字上看出为剔除重复项,这在后面章节中的分组操作中可能是有用的,例如需要保留每组的第一个值:

df.drop_duplicates('Class')
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1201 S_1 C_2 M street_5 188 68 97.0 A-
1301 S_1 C_3 M street_4 161 68 31.5 B+
2401 S_2 C_4 F street_2 192 62 45.3 A

参数与duplicate函数类似:

df.drop_duplicates('Class',keep='last')
School Class Gender Address Height Weight Math Physics
ID
2105 S_2 C_1 M street_4 170 81 34.2 A
2205 S_2 C_2 F street_7 183 76 85.4 B
2305 S_2 C_3 M street_4 187 73 48.9 B
2405 S_2 C_4 F street_6 193 54 47.6 B

在传入多列时等价于将多列共同视作一个多级索引,比较重复项:

df.drop_duplicates(['School','Class'])
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1201 S_1 C_2 M street_5 188 68 97.0 A-
1301 S_1 C_3 M street_4 161 68 31.5 B+
2101 S_2 C_1 M street_7 174 84 83.3 C
2201 S_2 C_2 M street_5 193 100 39.1 B
2301 S_2 C_3 F street_4 157 78 72.3 B+
2401 S_2 C_4 F street_2 192 62 45.3 A

六、抽样函数

这里的抽样函数指的就是sample函数

(a)n为样本量

df.sample(n=5)
School Class Gender Address Height Weight Math Physics
ID
2403 S_2 C_4 F street_6 158 60 59.7 B+
1305 S_1 C_3 F street_5 187 69 61.7 B-
2203 S_2 C_2 M street_4 155 91 73.8 A+
2304 S_2 C_3 F street_6 164 81 95.5 A-
1102 S_1 C_1 F street_2 192 73 32.5 B+

(b)frac为抽样比

df.sample(frac=0.05)
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192 73 32.5 B+
2103 S_2 C_1 M street_4 157 61 52.5 B-

(c)replace为是否放回

df.sample(n=df.shape[0],replace=True).head()
School Class Gender Address Height Weight Math Physics
ID
2404 S_2 C_4 F street_2 160 84 67.7 B
2401 S_2 C_4 F street_2 192 62 45.3 A
1305 S_1 C_3 F street_5 187 69 61.7 B-
2204 S_2 C_2 M street_1 175 74 47.2 B-
2103 S_2 C_1 M street_4 157 61 52.5 B-
df.sample(n=35,replace=True).index.is_unique
False

(d)axis为抽样维度,默认为0,即抽行

df.sample(n=3,axis=1).head()
Height Physics School
ID
1101 173 A+ S_1
1102 192 B+ S_1
1103 186 B+ S_1
1104 167 B- S_1
1105 159 B+ S_1

(e)weights为样本权重,自动归一化

df.sample(n=3,weights=np.random.rand(df.shape[0])).head()
School Class Gender Address Height Weight Math Physics
ID
1302 S_1 C_3 F street_1 175 57 87.7 A-
1102 S_1 C_1 F street_2 192 73 32.5 B+
2105 S_2 C_1 M street_4 170 81 34.2 A
#以某一列为权重,这在抽样理论中很常见
#抽到的概率与Math数值成正比
df.sample(n=3,weights=df['Math']).head()
School Class Gender Address Height Weight Math Physics
ID
1103 S_1 C_1 M street_2 186 82 87.2 B+
2405 S_2 C_4 F street_6 193 54 47.6 B
1205 S_1 C_2 F street_6 167 63 68.4 B-

七、问题与练习

1. 问题

【问题一】 如何更改列或行的顺序?如何交换奇偶行(列)的顺序?

【问题二】 如果要选出DataFrame的某个子集,请给出尽可能多的方法实现。

【问题三】 query函数比其他索引方法的速度更慢吗?在什么场合使用什么索引最高效?

【问题四】 单级索引能使用Slice对象吗?能的话怎么使用,请给出一个例子。

【问题五】 如何快速找出某一列的缺失值所在索引?

【问题六】 索引设定中的所有方法分别适用于哪些场合?怎么直接把某个DataFrame的索引换成任意给定同长度的索引?

【问题七】 对于多层索引,怎么对内层进行条件筛选?

【问题八】 swaplevel中的axis参数为1时,代表什么意思?i和j只能是数值型吗?

2. 练习

【练习一】 现有一份关于UFO的数据集,请解决下列问题:

pd.read_csv('data/UFO.csv').head()
datetime shape duration (seconds) latitude longitude
0 10/10/1949 20:30 cylinder 2700.0 29.883056 -97.941111
1 10/10/1949 21:00 light 7200.0 29.384210 -98.581082
2 10/10/1955 17:00 circle 20.0 53.200000 -2.916667
3 10/10/1956 21:00 circle 20.0 28.978333 -96.645833
4 10/10/1960 20:00 light 900.0 21.418056 -157.803611

(a)在所有被观测时间超过60s的时间中,哪个形状最多?

(b)对经纬度进行划分:-180°至180°以30°为一个经度划分,-90°至90°以18°为一个维度划分,请问哪个区域中报告的UFO事件数量最多?

【练习二】 现有一份关于口袋妖怪的数据集,请解决下列问题:

pd.read_csv('data/Pokemon.csv').head()
# Name Type 1 Type 2 Total HP Attack Defense Sp. Atk Sp. Def Speed Generation Legendary
0 1 Bulbasaur Grass Poison 318 45 49 49 65 65 45 1 False
1 2 Ivysaur Grass Poison 405 60 62 63 80 80 60 1 False
2 3 Venusaur Grass Poison 525 80 82 83 100 100 80 1 False
3 3 VenusaurMega Venusaur Grass Poison 625 80 100 123 122 120 80 1 False
4 4 Charmander Fire NaN 309 39 52 43 60 50 65 1 False

(a)双属性的Pokemon占总体比例的多少?

(b)在所有种族值(Total)不小于580的Pokemon中,非神兽(Legendary=False)的比例为多少?

(c)在第一属性为格斗系(Fighting)的Pokemon中,物攻排名前三高的是哪些?

(d)请问六项种族指标(HP、物攻、特攻、物防、特防、速度)极差的均值最大的是哪个属性(只考虑第一属性,且均值是对属性而言)?

(e)哪个属性(只考虑第一属性)神兽占总Pokemon的比例最高?该属性神兽的种族值均值也是最高的吗?

posted @ 2020-07-08 15:10  hichens  阅读(155)  评论(0编辑  收藏  举报