第2章 索引
import numpy as np
import pandas as pd
df = pd.read_csv('data/table.csv',index_col='ID')
df.head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
一、单级索引
1. loc方法、iloc方法、[]操作符
最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性,各有特点
(a)loc方法
① 单行索引:
df.loc[1103]
School S_1
Class C_1
Gender M
Address street_2
Height 186
Weight 82
Math 87.2
Physics B+
Name: 1103, dtype: object
② 多行索引:
df.loc[[1102,2304]]
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2304 |
S_2 |
C_3 |
F |
street_6 |
164 |
81 |
95.5 |
A- |
(注意:所有在loc中使用的切片全部包含右端点!这是因为如果作为Pandas的使用者,那么肯定不太关心最后一个标签再往后一位是什么,但是如果是左闭右开,那么就很麻烦,先要知道再后面一列的名字是什么,非常不方便,因此Pandas中将loc设计为左右全闭)
df.loc[1304:2103].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1304 |
S_1 |
C_3 |
M |
street_2 |
195 |
70 |
85.2 |
A |
1305 |
S_1 |
C_3 |
F |
street_5 |
187 |
69 |
61.7 |
B- |
2101 |
S_2 |
C_1 |
M |
street_7 |
174 |
84 |
83.3 |
C |
2102 |
S_2 |
C_1 |
F |
street_6 |
161 |
61 |
50.6 |
B+ |
2103 |
S_2 |
C_1 |
M |
street_4 |
157 |
61 |
52.5 |
B- |
df.loc[2402::-1].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
2402 |
S_2 |
C_4 |
M |
street_7 |
166 |
82 |
48.7 |
B |
2401 |
S_2 |
C_4 |
F |
street_2 |
192 |
62 |
45.3 |
A |
2305 |
S_2 |
C_3 |
M |
street_4 |
187 |
73 |
48.9 |
B |
2304 |
S_2 |
C_3 |
F |
street_6 |
164 |
81 |
95.5 |
A- |
2303 |
S_2 |
C_3 |
F |
street_7 |
190 |
99 |
65.9 |
C |
③ 单列索引:
df.loc[:,'Height'].head()
ID
1101 173
1102 192
1103 186
1104 167
1105 159
Name: Height, dtype: int64
④ 多列索引:
df.loc[:,['Height','Math']].head()
|
Height |
Math |
ID |
|
|
1101 |
173 |
34.0 |
1102 |
192 |
32.5 |
1103 |
186 |
87.2 |
1104 |
167 |
80.4 |
1105 |
159 |
84.8 |
df.loc[:,'Height':'Math'].head()
|
Height |
Weight |
Math |
ID |
|
|
|
1101 |
173 |
63 |
34.0 |
1102 |
192 |
73 |
32.5 |
1103 |
186 |
82 |
87.2 |
1104 |
167 |
81 |
80.4 |
1105 |
159 |
64 |
84.8 |
⑤ 联合索引:
df.loc[1102:2401:3,'Height':'Math'].head()
|
Height |
Weight |
Math |
ID |
|
|
|
1102 |
192 |
73 |
32.5 |
1105 |
159 |
64 |
84.8 |
1203 |
160 |
53 |
58.8 |
1301 |
161 |
68 |
31.5 |
1304 |
195 |
70 |
85.2 |
⑥ 函数式索引:
df.loc[lambda x:x['Gender']=='M'].head()
#loc中使用的函数,传入参数就是前面的df
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
1203 |
S_1 |
C_2 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
#这里的例子表示,loc中能够传入函数,并且函数的输入值是整张表,输出为标量、切片、合法列表(元素出现在索引中)、合法索引
def f(x):
return [1101,1103]
df.loc[f]
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
⑦ 布尔索引(将重点在第2节介绍)
df.loc[df['Address'].isin(['street_7','street_4'])].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
1303 |
S_1 |
C_3 |
M |
street_7 |
188 |
82 |
49.7 |
B |
2101 |
S_2 |
C_1 |
M |
street_7 |
174 |
84 |
83.3 |
C |
df.loc[[True if i[-1]=='4' or i[-1]=='7' else False for i in df['Address'].values]].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
1303 |
S_1 |
C_3 |
M |
street_7 |
188 |
82 |
49.7 |
B |
2101 |
S_2 |
C_1 |
M |
street_7 |
174 |
84 |
83.3 |
C |
小节:本质上说,loc中能传入的只有布尔列表和索引子集构成的列表,只要把握这个原则就很容易理解上面那些操作
(b)iloc方法(注意与loc不同,切片右端点不包含)
① 单行索引:
df.iloc[3]
School S_1
Class C_1
Gender F
Address street_2
Height 167
Weight 81
Math 80.4
Physics B-
Name: 1104, dtype: object
② 多行索引:
df.iloc[3:5]
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
③ 单列索引:
df.iloc[:,3].head()
ID
1101 street_1
1102 street_2
1103 street_2
1104 street_2
1105 street_4
Name: Address, dtype: object
④ 多列索引:
df.iloc[:,7::-2].head()
|
Physics |
Weight |
Address |
Class |
ID |
|
|
|
|
1101 |
A+ |
63 |
street_1 |
C_1 |
1102 |
B+ |
73 |
street_2 |
C_1 |
1103 |
B+ |
82 |
street_2 |
C_1 |
1104 |
B- |
81 |
street_2 |
C_1 |
1105 |
B+ |
64 |
street_4 |
C_1 |
⑤ 混合索引:
df.iloc[3::4,7::-2].head()
|
Physics |
Weight |
Address |
Class |
ID |
|
|
|
|
1104 |
B- |
81 |
street_2 |
C_1 |
1203 |
A+ |
53 |
street_6 |
C_2 |
1302 |
A- |
57 |
street_1 |
C_3 |
2101 |
C |
84 |
street_7 |
C_1 |
2105 |
A |
81 |
street_4 |
C_1 |
⑥ 函数式索引:
df.iloc[lambda x:[3]].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
小节:iloc中接收的参数只能为整数或整数列表或布尔列表,不能使用布尔Series,如果要用就必须如下把values拿出来
#df.iloc[df['School']=='S_1'].head() #报错
df.iloc[(df['School']=='S_1').values].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
(c) []操作符
(c.1)Series的[]操作
① 单元素索引:
s = pd.Series(df['Math'],index=df.index)
s[1101]
#使用的是索引标签
34.0
② 多行索引:
s[0:4]
#使用的是绝对位置的整数切片,与元素无关,这里容易混淆
ID
1101 34.0
1102 32.5
1103 87.2
1104 80.4
Name: Math, dtype: float64
③ 函数式索引:
s[lambda x: x.index[16::-6]]
#注意使用lambda函数时,直接切片(如:s[lambda x: 16::-6])就报错,此时使用的不是绝对位置切片,而是元素切片,非常易错
ID
2102 50.6
1301 31.5
1105 84.8
Name: Math, dtype: float64
④ 布尔索引:
s[s>80]
ID
1103 87.2
1104 80.4
1105 84.8
1201 97.0
1302 87.7
1304 85.2
2101 83.3
2205 85.4
2304 95.5
Name: Math, dtype: float64
【注意】如果不想陷入困境,请不要在行索引为浮点时使用[]操作符,因为在Series中[]的浮点切片并不是进行位置比较,而是值比较,非常特殊
s_int = pd.Series([1,2,3,4],index=[1,3,5,6])
s_float = pd.Series([1,2,3,4],index=[1.,3.,5.,6.])
s_int
1 1
3 2
5 3
6 4
dtype: int64
s_int[2:]
5 3
6 4
dtype: int64
s_float
1.0 1
3.0 2
5.0 3
6.0 4
dtype: int64
#注意和s_int[2:]结果不一样了,因为2这里是元素而不是位置
s_float[2:]
3.0 2
5.0 3
6.0 4
dtype: int64
(c.2)DataFrame的[]操作
① 单行索引:
df[1:2]
#这里非常容易写成df['label'],会报错
#同Series使用了绝对位置切片
#如果想要获得某一个元素,可用如下get_loc方法:
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
row = df.index.get_loc(1102)
df[row:row+1]
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
② 多行索引:
#用切片,如果是选取指定的某几行,推荐使用loc,否则很可能报错
df[3:5]
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
③ 单列索引:
df['School'].head()
ID
1101 S_1
1102 S_1
1103 S_1
1104 S_1
1105 S_1
Name: School, dtype: object
④ 多列索引:
df[['School','Math']].head()
|
School |
Math |
ID |
|
|
1101 |
S_1 |
34.0 |
1102 |
S_1 |
32.5 |
1103 |
S_1 |
87.2 |
1104 |
S_1 |
80.4 |
1105 |
S_1 |
84.8 |
⑤函数式索引:
df[lambda x:['Math','Physics']].head()
|
Math |
Physics |
ID |
|
|
1101 |
34.0 |
A+ |
1102 |
32.5 |
B+ |
1103 |
87.2 |
B+ |
1104 |
80.4 |
B- |
1105 |
84.8 |
B+ |
⑥ 布尔索引:
df[df['Gender']=='F'].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
1204 |
S_1 |
C_2 |
F |
street_5 |
162 |
63 |
33.8 |
B |
小节:一般来说,[]操作符常用于列选择或布尔选择,尽量避免行的选择
2. 布尔索引
(a)布尔符号:'&','|','~':分别代表和and,或or,取反not
df[(df['Gender']=='F')&(df['Address']=='street_2')].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
2401 |
S_2 |
C_4 |
F |
street_2 |
192 |
62 |
45.3 |
A |
2404 |
S_2 |
C_4 |
F |
street_2 |
160 |
84 |
67.7 |
B |
df[(df['Math']>85)|(df['Address']=='street_7')].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
1302 |
S_1 |
C_3 |
F |
street_1 |
175 |
57 |
87.7 |
A- |
1303 |
S_1 |
C_3 |
M |
street_7 |
188 |
82 |
49.7 |
B |
1304 |
S_1 |
C_3 |
M |
street_2 |
195 |
70 |
85.2 |
A |
df[~((df['Math']>75)|(df['Address']=='street_1'))].head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176 |
94 |
63.5 |
B- |
1203 |
S_1 |
C_2 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
1204 |
S_1 |
C_2 |
F |
street_5 |
162 |
63 |
33.8 |
B |
1205 |
S_1 |
C_2 |
F |
street_6 |
167 |
63 |
68.4 |
B- |
loc和[]中相应位置都能使用布尔列表选择:
df.loc[df['Math']>60,df.columns=='Physics'].head()
#思考:为什么df.loc[df['Math']>60,(df[:8]['Address']=='street_6').values].head()得到和上述结果一样?values能去掉吗?
|
Physics |
ID |
|
1103 |
B+ |
1104 |
B- |
1105 |
B+ |
1201 |
A- |
1202 |
B- |
(b) isin方法
df[df['Address'].isin(['street_1','street_4'])&df['Physics'].isin(['A','A+'])]
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
2105 |
S_2 |
C_1 |
M |
street_4 |
170 |
81 |
34.2 |
A |
2203 |
S_2 |
C_2 |
M |
street_4 |
155 |
91 |
73.8 |
A+ |
#上面也可以用字典方式写:
df[df[['Address','Physics']].isin({'Address':['street_1','street_4'],'Physics':['A','A+']}).all(1)]
#all与&的思路是类似的,其中的1代表按照跨列方向判断是否全为True
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
2105 |
S_2 |
C_1 |
M |
street_4 |
170 |
81 |
34.2 |
A |
2203 |
S_2 |
C_2 |
M |
street_4 |
155 |
91 |
73.8 |
A+ |
3. 快速标量索引
当只需要取一个元素时,at和iat方法能够提供更快的实现:
display(df.at[1101,'School'])
display(df.loc[1101,'School'])
display(df.iat[0,0])
display(df.iloc[0,0])
#可尝试去掉注释对比时间
#%timeit df.at[1101,'School']
#%timeit df.loc[1101,'School']
#%timeit df.iat[0,0]
#%timeit df.iloc[0,0]
'S_1'
'S_1'
'S_1'
'S_1'
4. 区间索引
此处介绍并不是说只能在单级索引中使用区间索引,只是作为一种特殊类型的索引方式,在此处先行介绍
(a)利用interval_range方法
pd.interval_range(start=0,end=5)
#closed参数可选'left''right''both''neither',默认左开右闭
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
closed='right',
dtype='interval[int64]')
pd.interval_range(start=0,periods=8,freq=5)
#periods参数控制区间个数,freq控制步长
IntervalIndex([(0, 5], (5, 10], (10, 15], (15, 20], (20, 25], (25, 30], (30, 35], (35, 40]],
closed='right',
dtype='interval[int64]')
(b)利用cut将数值列转为区间为元素的分类变量,例如统计数学成绩的区间情况:
math_interval = pd.cut(df['Math'],bins=[0,40,60,80,100])
#注意,如果没有类型转换,此时并不是区间类型,而是category类型
math_interval.head()
ID
1101 (0, 40]
1102 (0, 40]
1103 (80, 100]
1104 (80, 100]
1105 (80, 100]
Name: Math, dtype: category
Categories (4, interval[int64]): [(0, 40] < (40, 60] < (60, 80] < (80, 100]]
(c)区间索引的选取
df_i = df.join(math_interval,rsuffix='_interval')[['Math','Math_interval']]\
.reset_index().set_index('Math_interval')
df_i.head()
|
ID |
Math |
Math_interval |
|
|
(0, 40] |
1101 |
34.0 |
(0, 40] |
1102 |
32.5 |
(80, 100] |
1103 |
87.2 |
(80, 100] |
1104 |
80.4 |
(80, 100] |
1105 |
84.8 |
df_i.loc[65].head()
#包含该值就会被选中
|
ID |
Math |
Math_interval |
|
|
(60, 80] |
1202 |
63.5 |
(60, 80] |
1205 |
68.4 |
(60, 80] |
1305 |
61.7 |
(60, 80] |
2104 |
72.2 |
(60, 80] |
2202 |
68.5 |
df_i.loc[[65,90]].head()
|
ID |
Math |
Math_interval |
|
|
(60, 80] |
1202 |
63.5 |
(60, 80] |
1205 |
68.4 |
(60, 80] |
1305 |
61.7 |
(60, 80] |
2104 |
72.2 |
(60, 80] |
2202 |
68.5 |
如果想要选取某个区间,先要把分类变量转为区间变量,再使用overlap方法:
#df_i.loc[pd.Interval(70,75)].head() 报错
df_i[df_i.index.astype('interval').overlaps(pd.Interval(70, 85))].head()
#只要索引与(70,85]这个区间有交集就会被选中,注意pd.Interval默认构造区间都是左开右闭,可选closed参数right,left,both,neither
|
ID |
Math |
Math_interval |
|
|
(80, 100] |
1103 |
87.2 |
(80, 100] |
1104 |
80.4 |
(80, 100] |
1105 |
84.8 |
(80, 100] |
1201 |
97.0 |
(60, 80] |
1202 |
63.5 |
二、多级索引
1. 创建多级索引
(a)通过from_tuple或from_arrays
① 直接创建元组
tuples = [('A','a'),('A','b'),('B','a'),('B','b')]
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
mul_index
MultiIndex([('A', 'a'),
('A', 'b'),
('B', 'a'),
('B', 'b')],
names=['Upper', 'Lower'])
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
|
|
Score |
Upper |
Lower |
|
A |
a |
perfect |
b |
good |
B |
a |
fair |
b |
bad |
② 利用zip创建元组
L1 = list('AABB')
L2 = list('abab')
tuples = list(zip(L1,L2))
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
|
|
Score |
Upper |
Lower |
|
A |
a |
perfect |
b |
good |
B |
a |
fair |
b |
bad |
③ 通过Array创建
arrays = [['A','a'],['A','b'],['B','a'],['B','b']]
mul_index = pd.MultiIndex.from_tuples(arrays, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)
|
|
Score |
Upper |
Lower |
|
A |
a |
perfect |
b |
good |
B |
a |
fair |
b |
bad |
mul_index
#由此看出内部自动转成元组
MultiIndex([('A', 'a'),
('A', 'b'),
('B', 'a'),
('B', 'b')],
names=['Upper', 'Lower'])
(b)通过from_product
L1 = ['A','B']
L2 = ['a','b']
pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
#两两相乘
MultiIndex([('A', 'a'),
('A', 'b'),
('B', 'a'),
('B', 'b')],
names=['Upper', 'Lower'])
(c)指定df中的列创建(set_index方法)
df_using_mul = df.set_index(['Class','Address'])
df_using_mul.head()
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_1 |
street_1 |
S_1 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
S_1 |
F |
192 |
73 |
32.5 |
B+ |
street_2 |
S_1 |
M |
186 |
82 |
87.2 |
B+ |
street_2 |
S_1 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
S_1 |
F |
159 |
64 |
84.8 |
B+ |
2. 多层索引切片
df_using_mul.head()
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_1 |
street_1 |
S_1 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
S_1 |
F |
192 |
73 |
32.5 |
B+ |
street_2 |
S_1 |
M |
186 |
82 |
87.2 |
B+ |
street_2 |
S_1 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
S_1 |
F |
159 |
64 |
84.8 |
B+ |
(a)一般切片
#df_using_mul.loc['C_2','street_5']
#当索引不排序时,单个索引会报出性能警告
#df_using_mul.index.is_lexsorted()
#该函数检查是否排序
df_using_mul.sort_index().loc['C_2','street_5']
#df_using_mul.sort_index().index.is_lexsorted()
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_5 |
S_1 |
M |
188 |
68 |
97.0 |
A- |
street_5 |
S_1 |
F |
162 |
63 |
33.8 |
B |
street_5 |
S_2 |
M |
193 |
100 |
39.1 |
B |
#df_using_mul.loc[('C_2','street_5'):] 报错
#当不排序时,不能使用多层切片
df_using_mul.sort_index().loc[('C_2','street_6'):('C_3','street_4')]
#注意此处由于使用了loc,因此仍然包含右端点
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_6 |
S_1 |
M |
160 |
53 |
58.8 |
A+ |
street_6 |
S_1 |
F |
167 |
63 |
68.4 |
B- |
street_7 |
S_2 |
F |
194 |
77 |
68.5 |
B+ |
street_7 |
S_2 |
F |
183 |
76 |
85.4 |
B |
C_3 |
street_1 |
S_1 |
F |
175 |
57 |
87.7 |
A- |
street_2 |
S_1 |
M |
195 |
70 |
85.2 |
A |
street_4 |
S_1 |
M |
161 |
68 |
31.5 |
B+ |
street_4 |
S_2 |
F |
157 |
78 |
72.3 |
B+ |
street_4 |
S_2 |
M |
187 |
73 |
48.9 |
B |
df_using_mul.sort_index().loc[('C_2','street_7'):'C_3'].head()
#非元组也是合法的,表示选中该层所有元素
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_7 |
S_2 |
F |
194 |
77 |
68.5 |
B+ |
street_7 |
S_2 |
F |
183 |
76 |
85.4 |
B |
C_3 |
street_1 |
S_1 |
F |
175 |
57 |
87.7 |
A- |
street_2 |
S_1 |
M |
195 |
70 |
85.2 |
A |
street_4 |
S_1 |
M |
161 |
68 |
31.5 |
B+ |
(b)第一类特殊情况:由元组构成列表
df_using_mul.sort_index().loc[[('C_2','street_7'),('C_3','street_2')]]
#表示选出某几个元素,精确到最内层索引
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_7 |
S_2 |
F |
194 |
77 |
68.5 |
B+ |
street_7 |
S_2 |
F |
183 |
76 |
85.4 |
B |
C_3 |
street_2 |
S_1 |
M |
195 |
70 |
85.2 |
A |
(c)第二类特殊情况:由列表构成元组
df_using_mul.sort_index().loc[(['C_2','C_3'],['street_4','street_7']),:]
#选出第一层在‘C_2’和'C_3'中且第二层在'street_4'和'street_7'中的行
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_2 |
street_4 |
S_1 |
F |
176 |
94 |
63.5 |
B- |
street_4 |
S_2 |
M |
155 |
91 |
73.8 |
A+ |
street_7 |
S_2 |
F |
194 |
77 |
68.5 |
B+ |
street_7 |
S_2 |
F |
183 |
76 |
85.4 |
B |
C_3 |
street_4 |
S_1 |
M |
161 |
68 |
31.5 |
B+ |
street_4 |
S_2 |
F |
157 |
78 |
72.3 |
B+ |
street_4 |
S_2 |
M |
187 |
73 |
48.9 |
B |
street_7 |
S_1 |
M |
188 |
82 |
49.7 |
B |
street_7 |
S_2 |
F |
190 |
99 |
65.9 |
C |
3. 多层索引中的slice对象
L1,L2 = ['A','B'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_s = pd.DataFrame(np.random.rand(6,9),index=mul_index1,columns=mul_index2)
df_s
|
Big |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
A |
a |
0.903231 |
0.347113 |
0.613984 |
0.855879 |
0.837101 |
0.819969 |
0.583898 |
0.129336 |
0.681962 |
b |
0.020348 |
0.409778 |
0.594827 |
0.854630 |
0.087908 |
0.499946 |
0.554276 |
0.721452 |
0.538893 |
c |
0.411393 |
0.028585 |
0.901497 |
0.500408 |
0.354749 |
0.308252 |
0.319632 |
0.772193 |
0.120076 |
B |
a |
0.201583 |
0.480175 |
0.423258 |
0.239614 |
0.381462 |
0.849265 |
0.380623 |
0.286677 |
0.449948 |
b |
0.191132 |
0.787541 |
0.325968 |
0.546501 |
0.076944 |
0.764933 |
0.727802 |
0.656632 |
0.771932 |
c |
0.830845 |
0.053417 |
0.530750 |
0.699251 |
0.435809 |
0.504183 |
0.289220 |
0.310385 |
0.046243 |
idx=pd.IndexSlice
IndexSlice本质上是对多个Slice对象的包装
idx[1:9:2,'A':'C','start':'end':2]
(slice(1, 9, 2), slice('A', 'C', None), slice('start', 'end', 2))
索引Slice可以与loc一起完成切片操作,主要有两种用法
(a)loc[idx[*,*]]型
第一个星号表示行,第二个表示列,且使用布尔索引时,需要索引对齐
#例子1
df_s.loc[idx['B':,df_s.iloc[0]>0.6]]
#df_s.loc[idx['B':,df_s.iloc[:,0]>0.6]] #索引没有对齐报错
|
Big |
D |
E |
F |
|
Small |
d |
f |
d |
e |
f |
f |
Upper |
Lower |
|
|
|
|
|
|
B |
a |
0.201583 |
0.423258 |
0.239614 |
0.381462 |
0.849265 |
0.449948 |
b |
0.191132 |
0.325968 |
0.546501 |
0.076944 |
0.764933 |
0.771932 |
c |
0.830845 |
0.530750 |
0.699251 |
0.435809 |
0.504183 |
0.046243 |
#例子2
df_s.loc[idx[df_s.iloc[:,0]>0.6,:('E','f')]]
|
Big |
D |
E |
|
Small |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
A |
a |
0.903231 |
0.347113 |
0.613984 |
0.855879 |
0.837101 |
0.819969 |
B |
c |
0.830845 |
0.053417 |
0.530750 |
0.699251 |
0.435809 |
0.504183 |
(b)loc[idx[*,*],idx[*,*]]型
这里与上面的区别在于(a)中的loc是没有逗号隔开的,但(b)是用逗号隔开,前面一个idx表示行索引,后面一个idx为列索引
这种用法非常灵活,因此多举几个例子方便理解
#例子1
df_s.loc[idx['A'],idx['D':]]
#后面的层出现,则前面的层必须出现
#df_s.loc[idx['a'],idx['D':]] #报错
Big |
D |
E |
F |
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Lower |
|
|
|
|
|
|
|
|
|
a |
0.903231 |
0.347113 |
0.613984 |
0.855879 |
0.837101 |
0.819969 |
0.583898 |
0.129336 |
0.681962 |
b |
0.020348 |
0.409778 |
0.594827 |
0.854630 |
0.087908 |
0.499946 |
0.554276 |
0.721452 |
0.538893 |
c |
0.411393 |
0.028585 |
0.901497 |
0.500408 |
0.354749 |
0.308252 |
0.319632 |
0.772193 |
0.120076 |
#例子2
df_s.loc[idx[:'B','b':],:] #举这个例子是为了说明①可以在相应level使用切片②某一个idx可以用:代替表示全选
|
Big |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
A |
b |
0.020348 |
0.409778 |
0.594827 |
0.854630 |
0.087908 |
0.499946 |
0.554276 |
0.721452 |
0.538893 |
c |
0.411393 |
0.028585 |
0.901497 |
0.500408 |
0.354749 |
0.308252 |
0.319632 |
0.772193 |
0.120076 |
B |
b |
0.191132 |
0.787541 |
0.325968 |
0.546501 |
0.076944 |
0.764933 |
0.727802 |
0.656632 |
0.771932 |
c |
0.830845 |
0.053417 |
0.530750 |
0.699251 |
0.435809 |
0.504183 |
0.289220 |
0.310385 |
0.046243 |
#例子3
df_s.iloc[:,0]>0.6
Upper Lower
A a True
b False
c False
B a False
b False
c True
Name: (D, d), dtype: bool
df_s.loc[idx[:'B',df_s.iloc[:,0]>0.6],:] #这个例子表示相应位置还可以使用布尔索引
|
Big |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
A |
a |
0.903231 |
0.347113 |
0.613984 |
0.855879 |
0.837101 |
0.819969 |
0.583898 |
0.129336 |
0.681962 |
B |
c |
0.830845 |
0.053417 |
0.530750 |
0.699251 |
0.435809 |
0.504183 |
0.289220 |
0.310385 |
0.046243 |
#例子4
#特别要注意,(b)中的布尔索引是可以索引不对齐的,只需要长度一样,比如下面这个例子
df_s.loc[idx[:'B',(df_s.iloc[0]>0.6)[:6]],:]
|
Big |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
A |
a |
0.903231 |
0.347113 |
0.613984 |
0.855879 |
0.837101 |
0.819969 |
0.583898 |
0.129336 |
0.681962 |
c |
0.411393 |
0.028585 |
0.901497 |
0.500408 |
0.354749 |
0.308252 |
0.319632 |
0.772193 |
0.120076 |
B |
a |
0.201583 |
0.480175 |
0.423258 |
0.239614 |
0.381462 |
0.849265 |
0.380623 |
0.286677 |
0.449948 |
b |
0.191132 |
0.787541 |
0.325968 |
0.546501 |
0.076944 |
0.764933 |
0.727802 |
0.656632 |
0.771932 |
c |
0.830845 |
0.053417 |
0.530750 |
0.699251 |
0.435809 |
0.504183 |
0.289220 |
0.310385 |
0.046243 |
#例子5
df_s.loc[idx[:'B','c':,(df_s.iloc[:,0]>0.6)],:]
#idx中层数k1大于df层数k2时,idx前k2个参数若相应位置是元素或者元素切片,则表示相应df层的元素筛选,同时也可以选择用同长度bool序列
#idx后面多出来的参数只能选择同bool序列,这样设计的目的是可以将元素筛选和条件筛选同时运用
|
Big |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
B |
c |
0.830845 |
0.053417 |
0.53075 |
0.699251 |
0.435809 |
0.504183 |
0.28922 |
0.310385 |
0.046243 |
#例子6
df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),(df_s.iloc[:,0]>0.6)],:] #这个就不是元素筛选而是条件筛选
#df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),'c',:]] #报错
#df_s.loc[idx[:'c','B',(df_s.iloc[:,0]>0.6),:]] #报错
|
Big |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
A |
a |
0.903231 |
0.347113 |
0.613984 |
0.855879 |
0.837101 |
0.819969 |
0.583898 |
0.129336 |
0.681962 |
B |
c |
0.830845 |
0.053417 |
0.530750 |
0.699251 |
0.435809 |
0.504183 |
0.289220 |
0.310385 |
0.046243 |
4. 索引层的交换
(a)swaplevel方法(两层交换)
df_using_mul.head()
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Class |
Address |
|
|
|
|
|
|
C_1 |
street_1 |
S_1 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
S_1 |
F |
192 |
73 |
32.5 |
B+ |
street_2 |
S_1 |
M |
186 |
82 |
87.2 |
B+ |
street_2 |
S_1 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
S_1 |
F |
159 |
64 |
84.8 |
B+ |
df_using_mul.swaplevel(i=1,j=0,axis=0).sort_index().head()
|
|
School |
Gender |
Height |
Weight |
Math |
Physics |
Address |
Class |
|
|
|
|
|
|
street_1 |
C_1 |
S_1 |
M |
173 |
63 |
34.0 |
A+ |
C_2 |
S_2 |
M |
175 |
74 |
47.2 |
B- |
C_3 |
S_1 |
F |
175 |
57 |
87.7 |
A- |
street_2 |
C_1 |
S_1 |
F |
192 |
73 |
32.5 |
B+ |
C_1 |
S_1 |
M |
186 |
82 |
87.2 |
B+ |
(b)reorder_levels方法(多层交换)
df_muls = df.set_index(['School','Class','Address'])
df_muls.head()
|
|
|
Gender |
Height |
Weight |
Math |
Physics |
School |
Class |
Address |
|
|
|
|
|
S_1 |
C_1 |
street_1 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
F |
192 |
73 |
32.5 |
B+ |
street_2 |
M |
186 |
82 |
87.2 |
B+ |
street_2 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
F |
159 |
64 |
84.8 |
B+ |
df_muls.reorder_levels([2,0,1],axis=0).sort_index().head()
|
|
|
Gender |
Height |
Weight |
Math |
Physics |
Address |
School |
Class |
|
|
|
|
|
street_1 |
S_1 |
C_1 |
M |
173 |
63 |
34.0 |
A+ |
C_3 |
F |
175 |
57 |
87.7 |
A- |
S_2 |
C_2 |
M |
175 |
74 |
47.2 |
B- |
street_2 |
S_1 |
C_1 |
F |
192 |
73 |
32.5 |
B+ |
C_1 |
M |
186 |
82 |
87.2 |
B+ |
#如果索引有name,可以直接使用name
df_muls.reorder_levels(['Address','School','Class'],axis=0).sort_index().head()
|
|
|
Gender |
Height |
Weight |
Math |
Physics |
Address |
School |
Class |
|
|
|
|
|
street_1 |
S_1 |
C_1 |
M |
173 |
63 |
34.0 |
A+ |
C_3 |
F |
175 |
57 |
87.7 |
A- |
S_2 |
C_2 |
M |
175 |
74 |
47.2 |
B- |
street_2 |
S_1 |
C_1 |
F |
192 |
73 |
32.5 |
B+ |
C_1 |
M |
186 |
82 |
87.2 |
B+ |
三、索引设定
1. index_col参数
index_col是read_csv中的一个参数,而不是某一个方法:
pd.read_csv('data/table.csv',index_col=['Address','School']).head()
|
|
Class |
ID |
Gender |
Height |
Weight |
Math |
Physics |
Address |
School |
|
|
|
|
|
|
|
street_1 |
S_1 |
C_1 |
1101 |
M |
173 |
63 |
34.0 |
A+ |
street_2 |
S_1 |
C_1 |
1102 |
F |
192 |
73 |
32.5 |
B+ |
S_1 |
C_1 |
1103 |
M |
186 |
82 |
87.2 |
B+ |
S_1 |
C_1 |
1104 |
F |
167 |
81 |
80.4 |
B- |
street_4 |
S_1 |
C_1 |
1105 |
F |
159 |
64 |
84.8 |
B+ |
2. reindex和reindex_like
reindex是指重新索引,它的重要特性在于索引对齐,很多时候用于重新排序
df.head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
df.reindex(index=[1101,1203,1206,2402])
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173.0 |
63.0 |
34.0 |
A+ |
1203 |
S_1 |
C_2 |
M |
street_6 |
160.0 |
53.0 |
58.8 |
A+ |
1206 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
2402 |
S_2 |
C_4 |
M |
street_7 |
166.0 |
82.0 |
48.7 |
B |
df.reindex(columns=['Height','Gender','Average']).head()
|
Height |
Gender |
Average |
ID |
|
|
|
1101 |
173 |
M |
NaN |
1102 |
192 |
F |
NaN |
1103 |
186 |
M |
NaN |
1104 |
167 |
F |
NaN |
1105 |
159 |
F |
NaN |
可以选择缺失值的填充方法:fill_value和method(bfill/ffill/nearest),其中method参数必须索引单调
df.reindex(index=[1101,1203,1206,2402],method='bfill')
#这里的单调是指df必须索引经过排序,否则报错
#bfill表示用所在索引1206的后一个有效行填充,ffill为前一个有效行,nearest是指最近的
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1203 |
S_1 |
C_2 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
1206 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
2402 |
S_2 |
C_4 |
M |
street_7 |
166 |
82 |
48.7 |
B |
df.reindex(index=[1101,1203,1206,2402],method='nearest')
#数值上1205比1301更接近1206,因此用前者填充
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1203 |
S_1 |
C_2 |
M |
street_6 |
160 |
53 |
58.8 |
A+ |
1206 |
S_1 |
C_2 |
F |
street_6 |
167 |
63 |
68.4 |
B- |
2402 |
S_2 |
C_4 |
M |
street_7 |
166 |
82 |
48.7 |
B |
reindex_like的作用为生成一个横纵索引完全与参数列表一致的DataFrame,数据使用被调用的表
df_temp = pd.DataFrame({'Weight':np.zeros(5),
'Height':np.zeros(5),
'ID':[1101,1104,1103,1106,1102]}).set_index('ID')
df_temp.reindex_like(df[0:5][['Weight','Height']])
|
Weight |
Height |
ID |
|
|
1101 |
0.0 |
0.0 |
1102 |
0.0 |
0.0 |
1103 |
0.0 |
0.0 |
1104 |
0.0 |
0.0 |
1105 |
NaN |
NaN |
如果df_temp单调还可以使用method参数:
df_temp = pd.DataFrame({'Weight':range(5),
'Height':range(5),
'ID':[1101,1104,1103,1106,1102]}).set_index('ID').sort_index()
df_temp.reindex_like(df[0:5][['Weight','Height']],method='bfill')
#可以自行检验这里的1105的值是否是由bfill规则填充
|
Weight |
Height |
ID |
|
|
1101 |
0 |
0 |
1102 |
4 |
4 |
1103 |
2 |
2 |
1104 |
1 |
1 |
1105 |
3 |
3 |
3. set_index和reset_index
先介绍set_index:从字面意思看,就是将某些列作为索引
使用表内列作为索引:
df.head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
df.set_index('Class').head()
|
School |
Gender |
Address |
Height |
Weight |
Math |
Physics |
Class |
|
|
|
|
|
|
|
C_1 |
S_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
C_1 |
S_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
C_1 |
S_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
C_1 |
S_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
C_1 |
S_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
利用append参数可以将当前索引维持不变
df.set_index('Class',append=True).head()
|
|
School |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
Class |
|
|
|
|
|
|
|
1101 |
C_1 |
S_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
C_1 |
S_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
C_1 |
S_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
C_1 |
S_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
C_1 |
S_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
当使用与表长相同的列作为索引(需要先转化为Series,否则报错):
df.set_index(pd.Series(range(df.shape[0]))).head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
可以直接添加多级索引:
df.set_index([pd.Series(range(df.shape[0])),pd.Series(np.ones(df.shape[0]))]).head()
|
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
1.0 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
1.0 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
1.0 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
1.0 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
1.0 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
下面介绍reset_index方法,它的主要功能是将索引重置
默认状态直接恢复到自然数索引:
df.reset_index().head()
|
ID |
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
0 |
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1 |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2 |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
3 |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
4 |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
用level参数指定哪一层被reset,用col_level参数指定set到哪一层:
L1,L2 = ['A','B','C'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_temp = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2)
df_temp.head()
|
Big |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
A |
a |
0.077679 |
0.567787 |
0.665333 |
0.942349 |
0.531474 |
0.330951 |
0.882092 |
0.275882 |
0.650953 |
b |
0.770243 |
0.313352 |
0.220805 |
0.027873 |
0.761497 |
0.119895 |
0.310588 |
0.198915 |
0.472835 |
c |
0.160599 |
0.974000 |
0.929504 |
0.750928 |
0.097759 |
0.675912 |
0.686486 |
0.614004 |
0.167216 |
B |
a |
0.968565 |
0.406914 |
0.173109 |
0.533618 |
0.014341 |
0.701709 |
0.704982 |
0.623265 |
0.677072 |
b |
0.687038 |
0.017382 |
0.105115 |
0.025243 |
0.605660 |
0.349725 |
0.018865 |
0.078166 |
0.920426 |
df_temp1 = df_temp.reset_index(level=1,col_level=1)
df_temp1.head()
Big |
|
D |
E |
F |
Small |
Lower |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
|
|
|
|
|
|
|
|
|
|
A |
a |
0.077679 |
0.567787 |
0.665333 |
0.942349 |
0.531474 |
0.330951 |
0.882092 |
0.275882 |
0.650953 |
A |
b |
0.770243 |
0.313352 |
0.220805 |
0.027873 |
0.761497 |
0.119895 |
0.310588 |
0.198915 |
0.472835 |
A |
c |
0.160599 |
0.974000 |
0.929504 |
0.750928 |
0.097759 |
0.675912 |
0.686486 |
0.614004 |
0.167216 |
B |
a |
0.968565 |
0.406914 |
0.173109 |
0.533618 |
0.014341 |
0.701709 |
0.704982 |
0.623265 |
0.677072 |
B |
b |
0.687038 |
0.017382 |
0.105115 |
0.025243 |
0.605660 |
0.349725 |
0.018865 |
0.078166 |
0.920426 |
df_temp1.columns
#看到的确插入了level2
MultiIndex([( '', 'Lower'),
('D', 'd'),
('D', 'e'),
('D', 'f'),
('E', 'd'),
('E', 'e'),
('E', 'f'),
('F', 'd'),
('F', 'e'),
('F', 'f')],
names=['Big', 'Small'])
df_temp1.index
#最内层索引被移出
Index(['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C'], dtype='object', name='Upper')
4. rename_axis和rename
rename_axis是针对多级索引的方法,作用是修改某一层的索引名,而不是索引标签
df_temp.rename_axis(index={'Lower':'LowerLower'},columns={'Big':'BigBig'})
|
BigBig |
D |
E |
F |
|
Small |
d |
e |
f |
d |
e |
f |
d |
e |
f |
Upper |
LowerLower |
|
|
|
|
|
|
|
|
|
A |
a |
0.077679 |
0.567787 |
0.665333 |
0.942349 |
0.531474 |
0.330951 |
0.882092 |
0.275882 |
0.650953 |
b |
0.770243 |
0.313352 |
0.220805 |
0.027873 |
0.761497 |
0.119895 |
0.310588 |
0.198915 |
0.472835 |
c |
0.160599 |
0.974000 |
0.929504 |
0.750928 |
0.097759 |
0.675912 |
0.686486 |
0.614004 |
0.167216 |
B |
a |
0.968565 |
0.406914 |
0.173109 |
0.533618 |
0.014341 |
0.701709 |
0.704982 |
0.623265 |
0.677072 |
b |
0.687038 |
0.017382 |
0.105115 |
0.025243 |
0.605660 |
0.349725 |
0.018865 |
0.078166 |
0.920426 |
c |
0.693014 |
0.931630 |
0.483892 |
0.384802 |
0.782509 |
0.162382 |
0.542573 |
0.315541 |
0.602177 |
C |
a |
0.133081 |
0.769785 |
0.892641 |
0.122432 |
0.094235 |
0.638547 |
0.456789 |
0.749265 |
0.250103 |
b |
0.526646 |
0.710174 |
0.754488 |
0.323552 |
0.290120 |
0.659110 |
0.325425 |
0.444771 |
0.168545 |
c |
0.905280 |
0.490078 |
0.735828 |
0.574289 |
0.460427 |
0.755454 |
0.692325 |
0.571639 |
0.145983 |
rename方法用于修改列或者行索引标签,而不是索引名:
df_temp.rename(index={'A':'T'},columns={'e':'changed_e'}).head()
|
Big |
D |
E |
F |
|
Small |
d |
changed_e |
f |
d |
changed_e |
f |
d |
changed_e |
f |
Upper |
Lower |
|
|
|
|
|
|
|
|
|
T |
a |
0.077679 |
0.567787 |
0.665333 |
0.942349 |
0.531474 |
0.330951 |
0.882092 |
0.275882 |
0.650953 |
b |
0.770243 |
0.313352 |
0.220805 |
0.027873 |
0.761497 |
0.119895 |
0.310588 |
0.198915 |
0.472835 |
c |
0.160599 |
0.974000 |
0.929504 |
0.750928 |
0.097759 |
0.675912 |
0.686486 |
0.614004 |
0.167216 |
B |
a |
0.968565 |
0.406914 |
0.173109 |
0.533618 |
0.014341 |
0.701709 |
0.704982 |
0.623265 |
0.677072 |
b |
0.687038 |
0.017382 |
0.105115 |
0.025243 |
0.605660 |
0.349725 |
0.018865 |
0.078166 |
0.920426 |
四、常用索引型函数
1. where函数
当对条件为False的单元进行填充:
df.head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
df.where(df['Gender']=='M').head()
#不满足条件的行全部被设置为NaN
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173.0 |
63.0 |
34.0 |
A+ |
1102 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
1103 |
S_1 |
C_1 |
M |
street_2 |
186.0 |
82.0 |
87.2 |
B+ |
1104 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
1105 |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
NaN |
通过这种方法筛选结果和[]操作符的结果完全一致:
df.where(df['Gender']=='M').dropna().head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173.0 |
63.0 |
34.0 |
A+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186.0 |
82.0 |
87.2 |
B+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188.0 |
68.0 |
97.0 |
A- |
1203 |
S_1 |
C_2 |
M |
street_6 |
160.0 |
53.0 |
58.8 |
A+ |
1301 |
S_1 |
C_3 |
M |
street_4 |
161.0 |
68.0 |
31.5 |
B+ |
第一个参数为布尔条件,第二个参数为填充值:
df.where(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173.000000 |
63.000000 |
34.000000 |
A+ |
1102 |
0.804438 |
0.956796 |
0.182926 |
0.728754 |
0.810268 |
0.254977 |
0.635681 |
0.0883274 |
1103 |
S_1 |
C_1 |
M |
street_2 |
186.000000 |
82.000000 |
87.200000 |
B+ |
1104 |
0.216128 |
0.677674 |
0.290603 |
0.000361722 |
0.697820 |
0.679540 |
0.930052 |
0.290292 |
1105 |
0.478766 |
0.802287 |
0.745546 |
0.900654 |
0.749546 |
0.573542 |
0.108087 |
0.00666063 |
2. mask函数
mask函数与where功能上相反,其余完全一致,即对条件为True的单元进行填充
df.mask(df['Gender']=='M').dropna().head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192.0 |
73.0 |
32.5 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167.0 |
81.0 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159.0 |
64.0 |
84.8 |
B+ |
1202 |
S_1 |
C_2 |
F |
street_4 |
176.0 |
94.0 |
63.5 |
B- |
1204 |
S_1 |
C_2 |
F |
street_5 |
162.0 |
63.0 |
33.8 |
B |
df.mask(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
0.682213 |
0.17613 |
0.81589 |
0.899976 |
0.779533 |
0.768027 |
0.824438 |
0.169901 |
1102 |
S_1 |
C_1 |
F |
street_2 |
192.000000 |
73.000000 |
32.500000 |
B+ |
1103 |
0.555236 |
0.758632 |
0.12173 |
0.374172 |
0.385267 |
0.264608 |
0.992286 |
0.00513714 |
1104 |
S_1 |
C_1 |
F |
street_2 |
167.000000 |
81.000000 |
80.400000 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159.000000 |
64.000000 |
84.800000 |
B+ |
3. query函数
df.head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
1104 |
S_1 |
C_1 |
F |
street_2 |
167 |
81 |
80.4 |
B- |
1105 |
S_1 |
C_1 |
F |
street_4 |
159 |
64 |
84.8 |
B+ |
query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、and/not/or/&/|/~/not in/in/==/!=、四则运算符
df.query('(Address in ["street_6","street_7"])&(Weight>(70+10))&(ID in [1303,2304,2402])')
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1303 |
S_1 |
C_3 |
M |
street_7 |
188 |
82 |
49.7 |
B |
2304 |
S_2 |
C_3 |
F |
street_6 |
164 |
81 |
95.5 |
A- |
2402 |
S_2 |
C_4 |
M |
street_7 |
166 |
82 |
48.7 |
B |
五、重复元素处理
1. duplicated方法
该方法返回了是否重复的布尔列表
df.duplicated('Class').head()
ID
1101 False
1102 True
1103 True
1104 True
1105 True
dtype: bool
可选参数keep默认为first,即首次出现设为不重复,若为last,则最后一次设为不重复,若为False,则所有重复项为True
df.duplicated('Class',keep='last').tail()
ID
2401 True
2402 True
2403 True
2404 True
2405 False
dtype: bool
df.duplicated('Class',keep=False).head()
ID
1101 True
1102 True
1103 True
1104 True
1105 True
dtype: bool
2. drop_duplicates方法
从名字上看出为剔除重复项,这在后面章节中的分组操作中可能是有用的,例如需要保留每组的第一个值:
df.drop_duplicates('Class')
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
2401 |
S_2 |
C_4 |
F |
street_2 |
192 |
62 |
45.3 |
A |
参数与duplicate函数类似:
df.drop_duplicates('Class',keep='last')
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
2105 |
S_2 |
C_1 |
M |
street_4 |
170 |
81 |
34.2 |
A |
2205 |
S_2 |
C_2 |
F |
street_7 |
183 |
76 |
85.4 |
B |
2305 |
S_2 |
C_3 |
M |
street_4 |
187 |
73 |
48.9 |
B |
2405 |
S_2 |
C_4 |
F |
street_6 |
193 |
54 |
47.6 |
B |
在传入多列时等价于将多列共同视作一个多级索引,比较重复项:
df.drop_duplicates(['School','Class'])
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1101 |
S_1 |
C_1 |
M |
street_1 |
173 |
63 |
34.0 |
A+ |
1201 |
S_1 |
C_2 |
M |
street_5 |
188 |
68 |
97.0 |
A- |
1301 |
S_1 |
C_3 |
M |
street_4 |
161 |
68 |
31.5 |
B+ |
2101 |
S_2 |
C_1 |
M |
street_7 |
174 |
84 |
83.3 |
C |
2201 |
S_2 |
C_2 |
M |
street_5 |
193 |
100 |
39.1 |
B |
2301 |
S_2 |
C_3 |
F |
street_4 |
157 |
78 |
72.3 |
B+ |
2401 |
S_2 |
C_4 |
F |
street_2 |
192 |
62 |
45.3 |
A |
六、抽样函数
这里的抽样函数指的就是sample函数
(a)n为样本量
df.sample(n=5)
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
2403 |
S_2 |
C_4 |
F |
street_6 |
158 |
60 |
59.7 |
B+ |
1305 |
S_1 |
C_3 |
F |
street_5 |
187 |
69 |
61.7 |
B- |
2203 |
S_2 |
C_2 |
M |
street_4 |
155 |
91 |
73.8 |
A+ |
2304 |
S_2 |
C_3 |
F |
street_6 |
164 |
81 |
95.5 |
A- |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
(b)frac为抽样比
df.sample(frac=0.05)
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2103 |
S_2 |
C_1 |
M |
street_4 |
157 |
61 |
52.5 |
B- |
(c)replace为是否放回
df.sample(n=df.shape[0],replace=True).head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
2404 |
S_2 |
C_4 |
F |
street_2 |
160 |
84 |
67.7 |
B |
2401 |
S_2 |
C_4 |
F |
street_2 |
192 |
62 |
45.3 |
A |
1305 |
S_1 |
C_3 |
F |
street_5 |
187 |
69 |
61.7 |
B- |
2204 |
S_2 |
C_2 |
M |
street_1 |
175 |
74 |
47.2 |
B- |
2103 |
S_2 |
C_1 |
M |
street_4 |
157 |
61 |
52.5 |
B- |
df.sample(n=35,replace=True).index.is_unique
False
(d)axis为抽样维度,默认为0,即抽行
df.sample(n=3,axis=1).head()
|
Height |
Physics |
School |
ID |
|
|
|
1101 |
173 |
A+ |
S_1 |
1102 |
192 |
B+ |
S_1 |
1103 |
186 |
B+ |
S_1 |
1104 |
167 |
B- |
S_1 |
1105 |
159 |
B+ |
S_1 |
(e)weights为样本权重,自动归一化
df.sample(n=3,weights=np.random.rand(df.shape[0])).head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1302 |
S_1 |
C_3 |
F |
street_1 |
175 |
57 |
87.7 |
A- |
1102 |
S_1 |
C_1 |
F |
street_2 |
192 |
73 |
32.5 |
B+ |
2105 |
S_2 |
C_1 |
M |
street_4 |
170 |
81 |
34.2 |
A |
#以某一列为权重,这在抽样理论中很常见
#抽到的概率与Math数值成正比
df.sample(n=3,weights=df['Math']).head()
|
School |
Class |
Gender |
Address |
Height |
Weight |
Math |
Physics |
ID |
|
|
|
|
|
|
|
|
1103 |
S_1 |
C_1 |
M |
street_2 |
186 |
82 |
87.2 |
B+ |
2405 |
S_2 |
C_4 |
F |
street_6 |
193 |
54 |
47.6 |
B |
1205 |
S_1 |
C_2 |
F |
street_6 |
167 |
63 |
68.4 |
B- |
七、问题与练习
1. 问题
【问题一】 如何更改列或行的顺序?如何交换奇偶行(列)的顺序?
【问题二】 如果要选出DataFrame的某个子集,请给出尽可能多的方法实现。
【问题三】 query函数比其他索引方法的速度更慢吗?在什么场合使用什么索引最高效?
【问题四】 单级索引能使用Slice对象吗?能的话怎么使用,请给出一个例子。
【问题五】 如何快速找出某一列的缺失值所在索引?
【问题六】 索引设定中的所有方法分别适用于哪些场合?怎么直接把某个DataFrame的索引换成任意给定同长度的索引?
【问题七】 对于多层索引,怎么对内层进行条件筛选?
【问题八】 swaplevel中的axis参数为1时,代表什么意思?i和j只能是数值型吗?
2. 练习
【练习一】 现有一份关于UFO的数据集,请解决下列问题:
pd.read_csv('data/UFO.csv').head()
|
datetime |
shape |
duration (seconds) |
latitude |
longitude |
0 |
10/10/1949 20:30 |
cylinder |
2700.0 |
29.883056 |
-97.941111 |
1 |
10/10/1949 21:00 |
light |
7200.0 |
29.384210 |
-98.581082 |
2 |
10/10/1955 17:00 |
circle |
20.0 |
53.200000 |
-2.916667 |
3 |
10/10/1956 21:00 |
circle |
20.0 |
28.978333 |
-96.645833 |
4 |
10/10/1960 20:00 |
light |
900.0 |
21.418056 |
-157.803611 |
(a)在所有被观测时间超过60s的时间中,哪个形状最多?
(b)对经纬度进行划分:-180°至180°以30°为一个经度划分,-90°至90°以18°为一个维度划分,请问哪个区域中报告的UFO事件数量最多?
【练习二】 现有一份关于口袋妖怪的数据集,请解决下列问题:
pd.read_csv('data/Pokemon.csv').head()
|
# |
Name |
Type 1 |
Type 2 |
Total |
HP |
Attack |
Defense |
Sp. Atk |
Sp. Def |
Speed |
Generation |
Legendary |
0 |
1 |
Bulbasaur |
Grass |
Poison |
318 |
45 |
49 |
49 |
65 |
65 |
45 |
1 |
False |
1 |
2 |
Ivysaur |
Grass |
Poison |
405 |
60 |
62 |
63 |
80 |
80 |
60 |
1 |
False |
2 |
3 |
Venusaur |
Grass |
Poison |
525 |
80 |
82 |
83 |
100 |
100 |
80 |
1 |
False |
3 |
3 |
VenusaurMega Venusaur |
Grass |
Poison |
625 |
80 |
100 |
123 |
122 |
120 |
80 |
1 |
False |
4 |
4 |
Charmander |
Fire |
NaN |
309 |
39 |
52 |
43 |
60 |
50 |
65 |
1 |
False |
(a)双属性的Pokemon占总体比例的多少?
(b)在所有种族值(Total)不小于580的Pokemon中,非神兽(Legendary=False)的比例为多少?
(c)在第一属性为格斗系(Fighting)的Pokemon中,物攻排名前三高的是哪些?
(d)请问六项种族指标(HP、物攻、特攻、物防、特防、速度)极差的均值最大的是哪个属性(只考虑第一属性,且均值是对属性而言)?
(e)哪个属性(只考虑第一属性)神兽占总Pokemon的比例最高?该属性神兽的种族值均值也是最高的吗?