线性可分支持向量机与软间隔最大化--SVM(2)
1|0线性可分支持向量机与软间隔最大化--SVM
### 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为。 输入 表示实例的特征向量,对应于输入空间的点; 输出 表示示例的类别。
我们说可以通过**间隔最大化**或者等价的求出相应的**凸二次规划问题**得到的**分离超平面**  以及决策函数:  但是,上述的解决方法对于下面的数据却不是很友好, 例如,下图中黄色的点不满足间隔大于等于1的条件
这样的数据集不是线性可分的, 但是去除少量的异常点之后,剩下的点都是线性可分的, 因此, 我们称这样的数据集是近似线性可分的。
对于近似线性可分的数据集,我们引入了松弛变量,使得函数间隔加上松弛变量大于等于1。这样就得到了下面的解决方案:
可以证明w是唯一的, 但是b不唯一,而是存在一个区间
### 下面来解决这个问题 首先引入拉格朗日函数(Lagrange Function):
他的对偶问题(参考拉格朗日对偶性(Lagrange duality))是极大极小问题, 首先求
。对
求导,解法如下:
## 综上, 引入松弛变量后线性支持向量机算法为: .
*我们引入的松弛变量去哪里了呢?为什么算法中没有了?
其实, 松弛变量在通过惩罚参数C隐式的作用。
我们可以改变C值,看看改变C哪些变量会随着改变。
增大C,由知,
就更有可能大于0, 再根据
,松弛变量
取0就更简单, 这样就没有约束作用了。对整个数据集来说相当于是小的约束作用。
反之也可推出约束作用更强。
可以用这张图来解释:
__EOF__
作 者:Hichens
出 处:https://www.cnblogs.com/hichens/p/11864493.html
关于博主:莫得感情的浅度学习机器人
版权声明:@Hichens
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是博主的最大动力!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人