hdu 6201 transaction transaction transaction

题意:一棵树,有点权,边权,问选择2个点,即abs(a[i]-a[j]) - (这两点经过的边权) 最大

思路: 我们假设买为 x ,卖为y ,路径消耗为z  ,即 x- (y+z)最大,即-(x-(y+z))最小,

    我们增加一个0点,他到每个点的距离为- 该点权值 (即买书的钱

    增加个n+1点,到每个点的距离为该点权值(即卖书的到的钱

    0到n+1跑个最短路即可

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 const int N=3e6+10;;
 4 const int INF=1000000;
 5 int n,m,dis[N],head[N],len;
 6 bool vis[N];
 7 int b[N];
 8 
 9 struct edge
10 {
11     int to,val,next;
12 }e[N];
13 
14 void add(int from,int to,int  val)
15 {
16     e[len].to=to;
17     e[len].val=val;
18     e[len].next=head[from];
19     head[from]=len++;
20 }
21 struct point
22 {
23     int val,id;
24     point(int id,int val):id(id),val(val){}
25     bool operator <(const point &x)const{
26         return val>x.val;
27     }
28 };
29 void dijkstra(int s)
30 {
31     memset(vis,0,sizeof(vis));
32     for(int i=0;i<N;i++)
33         dis[i]=INF;
34     priority_queue<point> q;
35     q.push(point(s,0));
36     dis[s]=0;
37     while(!q.empty())
38     {
39         int cur=q.top().id;
40         q.pop();
41         if(vis[cur]) continue;
42         vis[cur]=true;
43         for(int i=head[cur];i!=-1;i=e[i].next)
44         {
45             int id=e[i].to;
46             if(!vis[id] && dis[cur]+e[i].val < dis[id])
47             {
48                 dis[id]=dis[cur]+e[i].val;
49                 q.push(point(id,dis[id]));
50             }
51         }
52     }
53 }
54 
55 int main()
56 {
57     int t;
58     cin>>t;
59     while(t--)
60     {
61         scanf("%d",&n);
62         len=0;
63         for(int i=1;i<=n;i++) scanf("%d",&b[i]);
64         memset(head,-1,sizeof(head));
65         for(int i=1;i<n;i++)
66         {
67             int from,to,val;
68             scanf("%d%d%d",&from,&to,&val);
69             add(from,to,val);
70             add(to,from,val);
71         }
72         for(int i=1;i<=n;i++){
73             add(0,i,-b[i]);
74             add(i,0,-b[i]);
75         }
76         for(int i=1;i<=n;i++){
77             add(n+1,i,b[i]);
78             add(i,n+1,b[i]);
79         }
80         dijkstra(0);
81         printf("%d\n",abs(dis[n+1]));
82     }
83     return 0;
84 
85 }

 

posted on 2017-09-11 15:33  hhhhx  阅读(137)  评论(0编辑  收藏  举报

导航