hdu 6069

思路:n=p1^x1*p2^x2....pm^xm,则p的约数个数为(x1+1)*(x2+1)....(xm+1),那么n^k=p1^(x1+k)....pm^(xm+k),约数个数为(x1*k+1)*....*(xm*k+1)。

   先求出1-1e6内的质数,再对l--r之间的数求xi

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 const int N=1e6+10;
 5 const ll mod=998244353;
 6 
 7 ll prime[N],vis[N];
 8 
 9 int init(){
10     int x=0;
11     for(ll i=2;i<=N;i++){
12         if(!vis[i]) {
13                // cout<<i<<endl;
14                 prime[++x]=i;
15         }
16         else continue;
17         for(ll j=i*i;j<=N;j+=i){
18                 vis[j]=1;
19         }
20     }
21     return x;
22 }
23 ll a[N],b[N];
24 int main(){
25     int t;
26     ll l,r,k;
27     int len=init();
28     scanf("%d",&t);
29     while(t--){
30         scanf("%lld%lld%llld",&l,&r,&k);
31         for(int i=0;i<=N-1;i++){
32             a[i]=b[i]=1;
33         }
34         for(int i=1;i<=len;i++){
35             ll p=prime[i];ll L;
36             if(l%p!=0) L=(l/p+1)*p;  else L=l;
37             for(ll j=L;j<=r;j+=p){
38                 ll x=0;
39                 ll base=1, y=j;
40                 while(y%p==0){
41                     x++;
42                     y/=p;
43                     base*=p;
44                 }
45                 a[j-l+1]=a[j-l+1]*(x*k+1)%mod;
46                 b[j-l+1]*=base;
47 
48             }
49         }
50         ll sum=0;
51         for(ll i=l;i<=r;i++){
52             if(b[i-l+1]!=i)
53                 a[i-l+1]=a[i-l+1]*(k+1)%mod;
54             sum=(sum+a[i-l+1])%mod;
55         }
56         printf("%lld\n",sum);
57     }
58 }

 

posted on 2017-08-04 12:58  hhhhx  阅读(118)  评论(0编辑  收藏  举报

导航