HDU 5124 lines (线段树+离散化)

题面

Problem Description
John has several lines. The lines are covered on the X axis. Let A is a point which is covered by the most lines. John wants to know how many lines cover A.

Input
The first line contains a single integer T(1≤T≤100)(the data for N>100 less than 11 cases),indicating the number of test cases.
Each test case begins with an integer N(1≤N≤105),indicating the number of lines.
Next N lines contains two integers Xi and Yi(1≤Xi≤Yi≤109),describing a line.

Output
For each case, output an integer means how many lines cover A.

Sample Input
2
5
1 2
2 2
2 4
3 4
5 1000
5
1 1
2 2
3 3
4 4
5 5

Sample Output
3
1

思路

可以说是两个板子结合。

代码实现

#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
#define rep(i,f_start,f_end) for (int i=f_start;i<=f_end;++i)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define MT(x,i) memset(x,i,sizeof(x) )
#define rev(i,start,end) for (int i=start;i<end;i++)
#define inf 0x3f3f3f3f
#define mp(x,y) make_pair(x,y)
#define lowbit(x) (x&-x)
#define MOD 1000000007
#define exp 1e-8
#define N 1000005 
#define fi first 
#define se second
#define pb push_back
typedef long long ll;
typedef pair<int ,int> PII;
typedef pair<int ,PII> PIII;
ll gcd (ll a,ll b) {return b?gcd (b,a%b):a; }

const int maxn=1e5+10;
int t,n;
int le[maxn],ri[maxn];
int rec[maxn];

struct node {
    int l,r;
    int data,add;
}tree[maxn<<2];
int b[maxn],c[maxn];
int temp[maxn<<1];


inline void buildtree (int k,int l,int r) {
     tree[k].l=l,tree[k].r=r;
     tree[k].add=0,tree[k].data=0;
     if (l==r) return ;
     int mid=(l+r)>>1;
     buildtree (k*2,l,mid);
     buildtree (k*2+1,mid+1,r);
}

inline void lazydown (int k) {
    if (tree[k].add) {
        tree[k*2].add+=tree[k].add;
        tree[k*2+1].add+=tree[k].add;
        tree[k*2].data+=tree[k].add;
        tree[k*2+1].data+=tree[k].add;
        tree[k].add=0;
    }
}

inline void update (int k,int l,int r) {
    if (l==tree[k].l&&r==tree[k].r) {
        tree[k].data++;
        tree[k].add++;
        return ;
    }
    lazydown (k);

    int mid= (tree[k].l+tree[k].r)>>1;
    // if (l<=mid) update (k*2,l,r);
    // if (r>mid) update (k*2+1,l,r);
    if (l>mid) update (k*2+1,l,r);
    else if (r<=mid) update (k*2,l,r);
    else {
        update (k*2,l,mid);
        update (k*2+1,mid+1,r);
    }
    tree[k].data=max (tree[k*2].data,tree[k*2+1].data);
}



int  main () {
    // freopen ("data.in","r",stdin);
    cin>>t;
    while (t--) {
        cin>>n;
        MT (b,0);
        MT (c,0);
        MT (temp,0);

        int cnt=0;
        rev (i,0,n) {
            scanf ("%d %d",&b[i],&c[i]);
            temp[cnt++]=b[i];
            temp[cnt++]=c[i];
        }
        sort (temp,temp+cnt);
        int m=unique (temp,temp+cnt)-temp;
        buildtree (1,1,m);
        rev (i,0,n) {
            int tl=lower_bound (temp,temp+m,b[i])-temp+1;
            int tr=lower_bound (temp,temp+m,c[i])-temp+1;
            update (1,tl,tr);
        }
        cout<<tree[1].data<<endl;
    }
    // fclose (stdin);
    return 0;
}
posted @ 2020-08-14 00:27  Luglucky  阅读(93)  评论(0编辑  收藏  举报