【强化学习】python 实现 saras 例一

本文作者:hhh5460

本文地址https://www.cnblogs.com/hhh5460/p/10146554.html

说明:将之前 q-learning 实现的例一,用 saras 重新写了一遍。具体问题这里就不多说了。

0. q-learning 与 saras 伪代码的对比

图片来源:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/3-1-A-sarsa/(莫凡)

1. q-learning 与 saras 真实代码对比

a). q-learning 算法

# 探索学习13次
for i in range(13):
    # 0.从最左边的位置开始(不是必要的)
    current_state = 0
    # 1.进入循环,开始探索学习
    while current_state != states[-1]:
        # 2.取当前状态下的合法动作中,随机(或贪婪)地选一个作为 当前动作
        if random.uniform(0,1) > epsilon:  # 探索
            current_action = random.choice(get_valid_actions(current_state))
        else:
            #current_action = q_table.ix[current_state].idxmax() # 这种写法是有问题的!二维迷宫有机会陷入死锁
            s = q_table.ix[current_state].filter(items=get_valid_actions(current_state))
            current_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好
        #3.执行当前动作,得到下一个状态(位置)
        next_state = get_next_state(current_state, current_action)
        # 4.下个状态的奖励
        next_state_reward = rewards[next_state]
        # 5.取下一个状态所有的Q value,待取其最大值
        next_state_q_values = q_table.ix[next_state, get_valid_actions(next_state)]
        # 6.根据贝尔曼方程,更新 Q table 中当前状态-动作对应的 Q value,有max!
        q_table.ix[current_state, current_action] += alpha * (rewards[next_state] + gamma * next_state_q_values.max() - q_table.ix[current_state, current_action])
        # 7.进入下一个状态(位置)
        current_state = next_state

 

b). saras 算法

# 探索学习13次
for i in range(13):
    # 0.从最左边的位置开始(不是必要的)
    current_state = 0
    # 1.取当前状态下的一个合法动作
    if random.uniform(0,1) > epsilon: # 探索
        current_action = random.choice(get_valid_actions(current_state))
    else:                             # 利用(贪婪)
        s = q_table.ix[current_state].filter(items=get_valid_actions(current_state))
        current_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好
    # 2.进入循环,开始探索学习
    while current_state != states[-1]:
        # 3.执行当前动作,得到下一个状态(位置)
        next_state = get_next_state(current_state, current_action)
        # 4.取下个状态下的一个合法动作
        if random.uniform(0,1) > epsilon: # 探索
            next_action = random.choice(get_valid_actions(next_state))
        else:                             # 利用(贪婪)
            s = q_table.ix[next_state].filter(items=get_valid_actions(next_state))
            next_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好
        # 5.下个状态的奖励
        next_state_reward = rewards[next_state]
        # 6.取下个状态,下个动作对应的一个Q value
        next_q_value = q_table.ix[next_state, next_action]
        # 7.更新 Q table 中当前状态-动作对应的 Q value,无max!
        q_table.ix[current_state, current_action] += alpha * (next_state_reward + gamma * next_q_value - q_table.ix[current_state, current_action])
        # 8.进入下一状态、下一动作
        current_state, current_action = next_state, next_action

 

2. 完整代码

'''
-o---T
# T 就是宝藏的位置, o 是探索者的位置
'''
# 作者: hhh5460
# 时间:20181219

import pandas as pd
import random
import time


epsilon = 0.9   # 贪婪度 greedy
alpha = 0.1     # 学习率
gamma = 0.8     # 奖励递减值

states = range(6)           # 状态集。从0到5
actions = ['left', 'right'] # 动作集。也可添加动作'none',表示停留
rewards = [0,0,0,0,0,1]     # 奖励集。只有最后的宝藏所在位置才有奖励1,其他皆为0

q_table = pd.DataFrame(data=[[0 for _ in actions] for _ in states],
                       index=states, columns=actions)

def update_env(state):
    '''更新环境,并打印'''
    env = list('-----T') # 环境
    
    env[state] = 'o' # 更新环境
    print('\r{}'.format(''.join(env)), end='')
    time.sleep(0.1)
                       
def get_next_state(state, action):
    '''对状态执行动作后,得到下一状态'''
    global states
    # l,r,n = -1,+1,0
    if action == 'right' and state != states[-1]: # 除末状态(位置),向右+1
        next_state = state + 1
    elif action == 'left' and state != states[0]: # 除首状态(位置),向左-1
        next_state = state -1
    else:
        next_state = state
    return next_state
                       
def get_valid_actions(state):
    '''取当前状态下的合法动作集合,与reward无关!'''
    global actions # ['left', 'right']
    valid_actions = set(actions)
    if state == states[0]:              # 首状态(位置),则 不能向左
        valid_actions -= set(['left'])
    if state == states[-1]:             # 末状态(位置),则 不能向右
        valid_actions -= set(['right'])
    return list(valid_actions)
    

for i in range(13):
    #current_state = random.choice(states)
    current_state = 0
    if random.uniform(0,1) > epsilon: # 探索
        current_action = random.choice(get_valid_actions(current_state))
    else:                             # 利用(贪婪)
        #current_action = q_table.ix[current_state].idxmax() # 这种写法是有问题的!
        s = q_table.ix[current_state].filter(items=get_valid_actions(current_state))
        current_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好
    
    update_env(current_state) # 环境相关
    total_steps = 0           # 环境相关
    
    while current_state != states[-1]:
        next_state = get_next_state(current_state, current_action)
        
        if random.uniform(0,1) > epsilon: # 探索
            next_action = random.choice(get_valid_actions(next_state))
        else:                             # 利用(贪婪)
            #next_action = q_table.ix[next_state].idxmax() # 这种写法是有问题的!可能会陷入死锁
            s = q_table.ix[next_state].filter(items=get_valid_actions(next_state))
            next_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好
        
        next_state_reward = rewards[next_state]
        next_q_value = q_table.ix[next_state, next_action]
        
        q_table.ix[current_state, current_action] += alpha * (next_state_reward + gamma * next_q_value - q_table.ix[current_state, current_action])
        
        current_state, current_action = next_state, next_action
        
        update_env(current_state) # 环境相关
        total_steps += 1          # 环境相关
        
    print('\rEpisode {}: total_steps = {}'.format(i, total_steps), end='') # 环境相关
    time.sleep(2)                                                          # 环境相关
    print('\r                                ', end='')                    # 环境相关
    
print('\nq_table:')
print(q_table)

 

posted @ 2018-12-19 22:21  罗兵  阅读(1597)  评论(0编辑  收藏  举报