高等数学(10) 微分中值定理

微分中值定理(一系列定理总称)-罗尔定理

 

费马引理->罗尔定理->拉格朗日中值定理->柯西中值定理

 

导数为0的点称为驻点

 

 

连续、可导、在端点函数值相等。

 

 

2.微分中值定理——拉格朗日中值定理

微分中值定理——柯西中值定理

 

 

 

总结一下:

 

费马引理:

函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f '(ξ)=0。

 

 

罗尔定理:

如果 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f'(ξ)=0。:

 

拉格朗日中值定理:

 

如果函数f(x)满足:

(1)在闭区间[a,b]上连续

(2)在开区间(a,b)内可导

那么在开区间(a,b)内至少有一点

使等式

 

成立。

 

拉格朗日中值定理特别像微分近似公式,所以拉格朗日中值定理也叫微分中值定理。

 

10-4 洛必达法则 00型未定式

 

 

 

 

 

注意:在满足定理条件下有些时候洛必达法则也不能解决问题

 

洛必达法则——其他未定式

 

 

 

 

 

 

10-6 泰勒公式 泰勒中值定理

 

 

 

 

 

 

 

 

 

10-7 麦克劳林公式

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10-8 函数的单调性

 

 

 

9 函数的凹凸性

 

 

拐点:凹凸性改变的点叫拐点

 

 

 

小结

 

10 函数极值的概念

 

 

注意

注1:函数的极值是函数的局部性质

注2:对常见函数,极值可能出现在导数为0或不存在的点

 

 

 

 

 

 

11 函数极值求法

 

 

如果二阶导数为0的时候,就不能用这个了还是用第一充分条件

 

12 函数的最大值和最小值

 

 

2.连续函数的最值

 

13 函数图形的描绘

 

 

 

 

一阶导数为0 驻点

二阶导数为0 拐点的必要条件

 

小结

1.曲线渐近线球阀

 水平渐近线和垂直渐近线

2.函数图形的描绘方法

posted @ 2019-01-01 21:11  hh9515  阅读(5044)  评论(0编辑  收藏  举报