同余方程
问题描述
方程组:
\(x \equiv a_1 ( mod\:m_1)\)
\(x \equiv a_2(mod\:m_2)\)
····
\(x \equiv a_k(mod\: m_k)\)
求解x
求解
首先考虑前两个式子
\(x=m_1\cdot y_1+a_1=m_2\cdot y_2+a_2\)
则\(m_1y_1-m_2y_2=a_2-a_1\)(有解当且仅当\((m_1,m_2)|a_2-a_1)\)
\(y_1=y_0+\frac{km_2}{(m_1,m_2)}(k\in Z)\)
则\(x=m_1y_0+\frac{km_1m_2}{(m_1,m_2)}+a_1\),设\(x'=m_1y_0+a_1\)
则\(x=x'+k[m_1,m_2] ([m_1,m_2]为最小公倍数)\)
所以得到新的式子\(x\equiv x'(mod \:[m_1m_2])\)
则原来方程组方程数目减一
以此类推,得到\(x\equiv x'' (mod \:[m_1m_2m_3])\)
继续下去便得到x的解
poj2891
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define ll long long
using namespace std;
const int maxn=10000000+101;
inline ll read(){
ll x=0,f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1;
for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';
return x*f;
}
int k;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){d=a;x=1;y=0;return ;}
exgcd(b,a%b,d,x,y);
ll t=x;x=y;y=t-(a/b)*y;
return ;
}
int main(){
while(scanf("%d",&k)!=EOF){
ll a1=read(),r1=read(),a2,r2;
bool fa=false;
for(int i=2;i<=k;i++){
a2=read();r2=read();
if(fa)continue;
ll d,x,y,c=r1-r2;
exgcd(a2,a1,d,x,y);
if(c%d){fa=true;continue;}
x=x*(c/d);
a1/=d;
x=(x%a1+a1)%a1;//求最小整数解
x=(x*a2+r2);
a1=a1*a2;
r1=((x%a1)+a1)%a1;
}
if(fa)printf("-1\n");
else printf("%lld\n",r1);
}
return 0;
}
孙子定理
问题描述:
设\(m_1,m_2,···,m_k\)是两两互质的k个正整数
方程组:
\(x\equiv a_1(mod \: m_1)\)
\(x\equiv a_2(mod \:m_2)\)
····
\(x\equiv a_k(mod \:m_k)\)
设\(M=m_1m_2···m_k,M_i=\frac{M}{m_i},M_i^{'}M_i\equiv 1(mod \: m_i)\)
则解\(x\equiv \sum_{i=1}^{k}M_i^{'}M_ia_i(mod \: M)\)
证明
设\(x=u_1a_1+u_2a_2+···+u_ka_k\)
显然要满足方程组,则等价于\(x=M_1v_1a_1+M_2v_2a_2+····+M_kv_ka_k\)
当\(v_i=M_i'时,x满足方程组,所以求得解x\)