t分布与t检验的一点理解
最近又遇到了t分布及t检验方面的内容,发现有些地方自己当初没有很明白,就又查了些资料,加深了一下自己的理解,这里也将自己的一些理解记录下来。
1. 理论基础——大数定理与中心极限定理
在正式介绍t分布前,还是再强调一下数理统计学中的两大基石般的定理:大数定理与中心极限定理,后面会用到。这里我就不以数学公式的方式来说明了,直接说一下两个定理所表达的意思。
- 大数定理。不管是强大数定理还是弱大数定理,都表达着这样一个意思:当样本数量足够大时,这些样本的均值无限接近总体的期望。
- 中心极限定理。不管样本总体服从什么分布,当样本数量足够大时,样本的均值以正态分布的形式围绕总体均值波动。中心极限定理的表达方式可以有多种,我这里只是其中一种。
2. t 统计量
t 统计量是英国化学家、数学家、统计学家 William Sealy Gosset提出的,当年他在爱尔兰的吉尼斯酒厂(这个酒厂还有个很牛的事儿,它的老板编著了现今著名的《吉尼斯世界纪录》)工作时,酒厂禁止其将研究成果公开发表,以免泄露秘密,迫不得已William Sealy Gosset以笔名“The Student”发表研究成果,t统计量及t分布的命名就是源于改笔名。
大麦是酿造啤酒的主要原料,因此酒厂就希望大麦产量越高越好,于是就不断改进大麦种植工艺,此时就需要做试验来比较不同工艺下大麦的产量,但是实际条件不允许(或者为了减轻工作负担)大面积种植麦子来比较工艺的优劣,因此试验田种植是比较合适的方式。比如现在有两片试验田(如下图所示),左边的是采用工艺A种植的麦子,右边的是采用工艺B种植的麦子,两边各种100株麦子。下面我要开始编故事啦。。。
现在发现左边麦田中平均每株麦穗上有100粒麦子,右边麦田中平均每株麦穗上有120粒麦子,这说明啥?说明采用工艺B能得到更高的麦子产量对不?咱们外行可能会这么看,但是人家专业的可不轻易这么认为。这是采用小面积的试验田种出的麦子,一个是量少,不足以说明问题(想想咱们的大数定理),另一个是无法保证除工艺区别外其它因素都一样。因此,William Sealy Gosset就想,这20粒麦子的差值能不能说明工艺的优劣问题呢?
William Sealy Gosset知道,每株麦穗上的平均麦子数是有波动的,可能这一次种的麦子平均值是100,下一次就不一定了,可能就是105,也可能是95。那可以这样考虑啊,这20的差值是不是在工艺A下麦子平均产量的正常波动范围内?样本均值的波动可以用样本均值的标准差表示,注意:这里说的是样本均值的标准差,而不是样本的标准差,基于这种想法可以构造这样一个统计量
来评估工艺的优劣,其中是工艺A下每株麦穗上结的麦子数,
是工艺B下每株麦穗上结的麦子数,
是工艺A下每株麦穗上结的麦子数平均值的标准差。好了,到了这里故事也编得差不多了,t 统计量的由来也差不多就这样了,下面咱们严谨的定义一下 t 统计量,分两种情况,一种是单总体情况,另一种是双总体情况。
- 单总体情况。这种情况下 t 统计量的定义为
式中为样本的均值,
为总体的均值,
为总体标准差,
为样本个数,由于总体标准差无法得知,因此一般用样本标准差
来估计总体标准差。从数学上可以证明,若样本个数为
,样本均值的标准差(样本均值的波动)等于总体的标准差(总体波动)除以样本个数
,我们可以通过大数定理来简单理解一下,当样本个数增大时,样本均值的波动也应该是越小的。总体的标准差是无法获知的,一般用样本标准差来估计。这里着重强调一个概念——标准误,标准误即样本均值的标准差,它对于理解假设检验很重要。
- 双总体的情况。这种情况下t 统计量的定义为
式中为样本1的均值,
为样本2的均值,
为样本1与样本2均值差值的标准误。这里我不再说明
是怎么计算的了,一个原因是比较复杂,需要分几种情况讨论,另一个更主要的原因是
如何计算不重要,计算机内置函数会帮我们计算的,重要的是理解 t 统计量是如何提出的以及表示什么意思。
3. t 分布与正态分布
t 统计量的分布就是 t 分布了,下面我们以单总体时的 t 统计量为例,说明一下 t 分布与正态分布的关系。我们已经知道了样本的均值为,也知道
的标准差为
,那么依据中心极限定理,样本均值
服从均值为
,方差为
的正态分布,也许你已经发现了,没错,当样本数量足够大时,t 分布无限接近标准的正态分布
。
在第一节中也强调了,不管是大数定理还是中心极限定理,都是在样本数量足够大时管用的。在样本数量不是足够大时,尽管t 分布的概率密度曲线和正态分布分布曲线相近,但是还是有所区别,用样本标准差估计总体标准差是一个原因。
是t分布的概率密度曲线,这里我不写出
的具体公式了,有兴趣的同学可以自行研究,伟大的统计学家们已经研究透测
了,并且制作了t分布的概率表。从 t 统计量的定义式看就知道,样本个数的影响非常关键,因此 t 分布中有一个重要的概念——自由度,其值为
。为什么是
呢?我拿样本方差的计算过程来说明吧,样本方差为
当个样本均值确定时,如果知道了其中的任意
个样本的值,那么剩下的一个样本的值自然就确定了,这就是为什么自由度为
。这里还是在贴一次t分布的概率表吧。
4. t 检验
现在我们再回到一开始的“比较麦子种植工艺A和B的优劣比较”问题, William Sealy Gosset提出的问题是:这20的差值是否在工艺A下麦子平均产量的正常波动范围内?这实际上是一个双样本的 t 检验问题,不过可以将其转化为单样本的 t 检验问题,认为工艺B下麦子的均值也为100,即然后看一下这20的差值是否是显著的。现在我们提出如下假设
: 工艺B与工艺A下大麦产量一致
上面的例子中没有给出工艺B下麦子产量的标准差,我这里先假设一个,为,那么可以按照单样本的 t 统计量定义式计算此时的统计量值
选定 95%的置信水平,自由度为99(样本个数为100),查 t 概率分布表得到1.660(自由度99与自由度100接近,我这里就按100算了),这远小于17.889,因此我们有理由拒绝接受原假设,从而认为工艺B提升了麦子的产量。
5. 小结
对于 t 检验,我还想再说两句,不管是独立样本还是相依样本的 t 检验,目的都是为了判断两类样本在某一变量上的均值差异是否显著,这也是构造 t 检验的作用。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!