obtainKeywords
#!usr/bin/python #coding=utf-8 import urllib2 import sys, time, re import sys import chardet import jieba jieba.load_userdict("userdict.txt") import jieba.analyse import jieba.posseg as pseg import os jieba.initialize() import operator reload(sys); sys.setdefaultencoding('utf8'); import divideSentence #判断 文本(字符串)的变法类型 def obtainTextType(ff): # import chardet enc = chardet.detect(ff) return enc['encoding'] #返回文件类型 #文件编码类型判断 def obtainFileType(filepath): # import chardet tt = open(filepath, 'rb') ff = tt.readline() #这里试着换成read(5)也可以,但是换成readlines()后报错 tt.close() return obtainTextType(ff) #返回文件类型 #读取文件, 返回去掉空格和空白的字符串 def ReadFile(url): #url文件的路径 # print obtainFileType(url) if obtainFileType(url) == 'GB2312': #.decode("gbk").encode('utf-8') 以gbk编码格式读取字符串(因为他就是gbk编码的)并转换为utf-8格式输出 content = open(url, "rb").read().decode("gbk").encode('utf-8') # print obtainTextType(content) elif obtainFileType(url) == 'ascii': content = open(url, "rb").read().encode('utf-8') # print obtainTextType(content) else: # print obtainFileType(url) content = open(url, "rb").read() # print obtainTextType(content) strRe = re.sub('\s', '', content) #用正则干掉所有的空白 return strRe #分词,对中文文章进行分词 def divide_text_words(content): #分词, 未登录词用veterbi分词 words = list(jieba.cut(content, cut_all=False)) #print "分词的总数:", len(words) #wordset = sorted(set(words)) #print "不重复的单词数:", len(wordset) return words ''' #将数据写入文件 list = words fl = open('list.txt', 'wb') for i in range(len(list)): fl.write(list[i].encode('utf-8')+'--') fl.close() ''' # 获取停用词表,返回一个中文的停用词列表 def stopWords(): #读取文件中的停用词,返回停用词列表 cn_stop_words_file = open("extra_dict/cn_stop_words.txt", "rb").readlines() cn_stop_word_list = [] # 停用词,词表. for word in cn_stop_words_file: word = re.sub('\s', '', word) #用正则干掉所有的空白 #print word cn_stop_word_list.append(word.decode('utf-8')) return cn_stop_word_list #去掉停用词,参数是要处理的词列表 和 停用词列表, 返回值是处理之后的列表 def delStopWords(words, stopWords): reWords = [] for word in words: if word in stopWords: continue else: reWords.append(word) return reWords #获取关键词列表,并返回关键词列表 def keywords(content): # #TF-IDF # jieba.analyse.set_idf_path("extra_dict/idf.txt.big"); # tf_idf_tags = jieba.analyse.extract_tags(content, topK = 10) # # print "TF-IDF 未去除停用词, 获取10个关键词" # print(",".join(tf_idf_tags)) #去掉停用词 TF-IDF 语言,研究,汉语,中文信息处理,汉字 jieba.analyse.set_idf_path("extra_dict/idf.txt.big"); jieba.analyse.set_stop_words("extra_dict/cn_stop_words.txt") tf_idf_stop_words_tags = jieba.analyse.extract_tags(content, topK = 10) # print type(tf_idf_stop_words_tags) # print "TF-IDF 去除停用词" # print(",".join(tf_idf_stop_words_tags)) #TextRank 分词 # print "TextRank, 获取10个关键词" #TextRank_words = [] TextRank_words = jieba.analyse.textrank(content) # print type(TextRank_words) # key_words_listprint(",".join(TextRank_words)) keywords_list = TextRank_words + tf_idf_stop_words_tags keywords = list(set(keywords_list)) return keywords #统计分词,统计词频. 参数: words 需要统计的分词之后的列表, # high_frequency_level:高频词汇的等级,数值越小,统计的量越大. def having_high_frequency_vocabulary(words, high_frequency_level): # 统计分词结果后,每个个分词的次数 wordsDict = {} DictsMaxWordlen = 0 singal = '' for w in words: if wordsDict.get(w) == None: wordsDict[w] = 1 else: wordsDict[w] += 1 if DictsMaxWordlen <= wordsDict[w]: DictsMaxWordlen = wordsDict[w] # global singal singal = w #print w #print "分词最多重复的次数:%d" % DictsMaxWordlen , "分词是: %s" % singal #按字典值排序(默认为升序),返回值是字典{key, tuple} sorted_wordsDict = sorted(wordsDict.iteritems(), key=operator.itemgetter(1)) # print sorted_wordsDict[2][0] #按照统计次数相同的词,进行分组. classNumWord = {} #保存分组之后的字典, 例如: {1:['1', '2'], 2:['文化', '历史'], } for w in sorted_wordsDict: if classNumWord.has_key(w[1]) == True: if w[0] not in classNumWord[w[1]]: classNumWord[w[1]].append(w[0]) else: classNumWord[w[1]] = [] classNumWord[w[1]].append(w[0]) #将字典排序,按照升序, 通过键排序, sort_classNumWord = sorted(classNumWord.iteritems(), key=lambda asd:asd[0], reverse = False) wordsList = [] #存取单词的列表 #根据自己的想法,设置前多少级的词频,进入统计 for num in range(int(len(sort_classNumWord) * high_frequency_level), len(sort_classNumWord)): #print sort_classNumWord[num][0] wordsList = wordsList + sort_classNumWord[num][1] # print "数字大小", int(len(sort_classNumWord) * high_frequency_level) # print len(wordsList) return wordsList # print type(sort_classNumWord) # print type(sort_classNumWord[20]) # print 'sort_classNumWord[20][1]', sort_classNumWord[20][1] # print type(sort_classNumWord[20][1]) # print sort_classNumWord[20][1][0] # print sort_classNumWord[20][1][1] # wordslength = 0 #分词的总数 # worldsNum = 0 #分词有多少个不同的词或词组 # wordsFequencelist = {} #分词出现的频次等级,从1到N次,并存储所对应等级的词语个数 # for w in sort_classNumWord: # worldsNum += w[0] # wordslength += len(w[1]) * w[0] # wordsFequencelist[w[0]] = [] # wordsFequencelist[w[0]].append(len(w[1])) # sort_wordsFequencelist = sorted(wordsFequencelist.iteritems(), key=lambda asd:asd[0], reverse = False) # print '\t\t频率是单词出现的次数, 次数是出现对应次数的所有不同单词的总和' # lenWords = 0 # for wordsFequence in sort_wordsFequencelist: # lenWords += 1 # print '频率:{0:<4} 词数:{1:>6}'.format(wordsFequence[0], wordsFequence[1]), " ", # if lenWords % 4 == 0: # print # print # print "一共有".decode('utf-8'), worldsNum, '个不同的词或词组'.decode('utf-8') # print "一共有".decode('utf-8'), wordslength, '个词或词组'.decode('utf-8') #获取高频词汇的函数, 只去除列表中停用词. def having_del_stop_high_frequency_word(strReContent): stop_words_list = stopWords() #获取停用词 #获取高频词汇,设置阈值, 取出高频词汇, 消除 关键词和停用词 共同构成的词表, 剩下的高频词汇. words = divide_text_words(strReContent) # 对文章进行分词 high_frequency_vocabulary = having_high_frequency_vocabulary(words, 0.333) # 计算词频, 取后等级, 全体等级数量的后2/3的所有词. high_frequency_words = delStopWords(high_frequency_vocabulary, stop_words_list) # 获取删除停用词之后的词汇列表 return high_frequency_words #获取高频词汇的函数, 去除关键词和停用词的高频词汇, 参数是strReContent 文本. def having_del_keywords_and_stop_high_frequency_word(strReContent): key_words_list = keywords(strReContent) #获取关键词通过tf-idf和textRank stop_words_list = stopWords() #获取停用词 #获取高频词汇,设置阈值,取出高频词汇,消除 关键词和停用词 共同构成的词表, 剩下的高频词汇. words = divide_text_words(strReContent) # 对文章进行分词 high_frequency_vocabulary = having_high_frequency_vocabulary(words, 0.333) # 计算词频, 取后等级, 全体等级数量的后2/3的所有词. stop_words_list = list(set(stop_words_list + key_words_list)) # 将关键词 和 停用词叠加, 合成停用词表 high_frequency_delstopWords_list = delStopWords(high_frequency_vocabulary, stop_words_list) #获取删除停用词之后的词汇列表 return high_frequency_delstopWords_list #获取关键词,通过tf-idf和textRank合成,在去除停用词 def having_keywords(strReContent): key_words_list = keywords(strReContent) #获取关键词通过tf-idf和textRank stop_words_list = stopWords() #获取停用词 keywords_del_stop_list = delStopWords(key_words_list, stop_words_list) #获取删除停用词之后的词汇列表 return keywords_del_stop_list # ------------------------------------------------------------------------------------------------------------------------# if __name__ == '__main__': #这里读取的文件是utf-8 和 gbk 文件, 暂不支持asscii码. #获取关键词,通过tf-idf和textRank合成,在去除停用词 strReContent = ReadFile('DIPS-LY06-15339.txt') #获取去掉空白的中文文档字符串 # print obtainTextType(strReContent) key_words_list = keywords(strReContent) #获取关键词通过tf-idf和textRank stop_words_list = stopWords() #获取停用词 keywords_del_stop_list = delStopWords(key_words_list, stop_words_list) #获取删除停用词之后的词汇列表 print print 'keywords_del_stop_list' for word in keywords_del_stop_list: print word print # 获取高频词汇,设置阈值,取出高频词汇,消除 关键词和停用词 共同构成的词表, 剩下的高频词汇. words = divide_text_words(strReContent) #对文章进行分词 high_frequency_vocabulary = having_high_frequency_vocabulary(words, 0.333) #计算词频,取后等级,2/3的所有词. stop_words_list = stop_words_list + key_words_list #将关键词和停用词叠加,合成停用词表 # for i in range(0, len(stop_words_list)): # stop_words_list[i] = stop_words_list[i].encode('utf8') # for i in range(0, len(high_frequency_vocabulary)): # high_frequency_vocabulary[i] = high_frequency_vocabulary[i].encode('utf8') # print 'high_frequency_vocabulary' # for word in high_frequency_vocabulary: # print word # print high_frequency_delstopWords_list = delStopWords(high_frequency_vocabulary, stop_words_list) #获取删除停用词之后的词汇列表 # print type(stop_words_list[1]) # print type(high_frequency_vocabulary[1]) # print # high_frequency_delstopWords_list = [] # for word in high_frequency_vocabulary: # print '111111', word, type(word) # # word = (word).decode('utf8') # if word in stop_words_list: # print 'continue' # continue # else: # high_frequency_delstopWords_list.append(word) # # print divideSentence.obtainTextType(stop_words_list[1]) print print 'high_frequency_delstopWords_list' for word in high_frequency_delstopWords_list: print word print print