HDU 5363 Key Set(快速幂取模)

 
 
Problem Description
 
soda has a set S with n integers {1,2,,n}. A set is called key set if the sum of integers in the set
is an even number. He wants to know how many nonempty subsets of S are key set.
 
Input
 
There are multiple test cases. The first line of input contains an integer T (1T105), indicating
the number of test cases. For each test case:
 
The first line contains an integer n (1n109), the number of integers in the set.
 
Output
 
For each test case, output the number of key sets modulo 1000000007.
 
Sample Input
 
4
1
2
3
4
 
Sample Output
 
0
1
3
7
 
 
题意:给你一个元素为1到n的集合S,问集合S的非空子集中元素和为偶数的非空子集有多少个。
  
题解:我们知道偶数+偶数=偶数,奇数+奇数=偶数,假设现在有a个偶数,b个奇数。则
 
 
根据二项式展开公式可得2n-1最后的结果还需减去

即空集的情况,因为题目要求非空子集,所以最终结果为2n-1-1。

 

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <iostream>
 4 #include <algorithm>
 5 using namespace std;
 6 const int mod = 1e9 + 7;
 7 long long power(long long n, long long m, long long mod)
 8 {
 9     long long sum = 1;
10     n %= mod;
11     while (m){
12        if (m % 2)
13         sum = sum * n % mod;
14        n = n * n % mod;
15        m /= 2;
16     }
17     return sum;
18 }
19 int main()
20 {
21     int t;
22     scanf("%d",&t);
23     while (t--){
24         long long n;
25         scanf("%I64d", &n);
26         long long sum = power(2, n-1, mod) - 1;
27         printf("%I64d\n",sum);
28     }
29     return 0;
30 }
View Code

 

posted @ 2015-08-07 15:30  HGF  阅读(187)  评论(0编辑  收藏  举报