每日博客

HADOOP实验-HDFS与MAPREDUCE操作

一、实验目的 

1、利用虚拟机搭建集群部署hadoop

2、HDFS文件操作以及文件接口编程;

3、MAPREDUCE并行程序开发、发布与调用。

二、实验内容

1. HDFS文件操作

调用HDFS文件接口实现对分布式文件系统中文件的访问,如创建、修改、删除等。

源代码:

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataOutputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.log4j.BasicConfigurator;

 

public class test1 {

 

       public static void main(String[] args) {

              BasicConfigurator.configure();

              try {

                     Configuration conf = new Configuration();

                     FileSystem fs = FileSystem.get(conf);

                     String filename = "hdfs://localhost:9000/yun/test.txt";

                     FSDataOutputStream os = fs.create(new Path(filename));

                     byte[] buff = "hello world!".getBytes();

                     os.write(buff, 0, buff.length);

                     System.out.println("Create" + filename);

              } catch (Exception e) {

                     e.printStackTrace();

              }

       }

}

运行结果:

 

 

 

 

2. MAPREDUCE并行程序开发

(1)求每年最高气温

源代码:

package yun;

 

import java.io.IOException;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class Temperature {

       static class TempMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

              @Override

              public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

                     System.out.print("Before Mapper: " + key + ", " + value);

                     String line = value.toString();

                     String year = line.substring(0, 4);

                     int temperature = Integer.parseInt(line.substring(8));

                     context.write(new Text(year), new IntWritable(temperature));

                     System.out.println("======" + "After Mapper:" + new Text(year) + ", " + new IntWritable(temperature));

              }

       }

 

       static class TempReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

              @Override

              public void reduce(Text key, Iterable<IntWritable> values, Context context)

                            throws IOException, InterruptedException {

                     int maxValue = Integer.MIN_VALUE;

                     StringBuffer sb = new StringBuffer();

                    

                     for (IntWritable value : values) {

                            maxValue = Math.max(maxValue, value.get());

                            sb.append(value).append(", ");

                     }

                     System.out.print("Before Reduce: " + key + ", " + sb.toString());

                     context.write(key, new IntWritable(maxValue));

                     System.out.println("======" + "After Reduce: " + key + ", " + maxValue);

              }

       }

       public static void main(String[] args) throws Exception {

              String dst = "hdfs://localhost:9000/yun/intput.txt";

              String dstOut = "hdfs://localhost:9000/yun/output";

              Configuration hadoopConfig = new Configuration();

              hadoopConfig.set("fs.hdfs.impl", org.apache.hadoop.hdfs.DistributedFileSystem.class.getName());

              hadoopConfig.set("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class.getName());

              Job job = new Job(hadoopConfig);

              // job.setJarByClass(NewMaxTemperature.class);

              FileInputFormat.addInputPath(job, new Path(dst));

              FileOutputFormat.setOutputPath(job, new Path(dstOut));

              job.setMapperClass(TempMapper.class);

              job.setReducerClass(TempReducer.class);

              job.setOutputKeyClass(Text.class);

              job.setOutputValueClass(IntWritable.class);

              job.waitForCompletion(true);

              System.out.println("Finished");

       }

}

运行结果:

 

 

 

 

 

 

(2)词频统计

源代码:

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import org.apache.log4j.BasicConfigurator;

public class WordCountRunner {

       public static void main(String[] args)

                     throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {

              BasicConfigurator.configure();

              Configuration conf = new Configuration();

              Job job = new Job(conf);

              job.setJarByClass(WordCountRunner.class);

              job.setJobName("wordcount");

              job.setOutputKeyClass(Text.class);

              job.setOutputValueClass(LongWritable.class);

              job.setMapperClass(WordCountMapper.class);

              job.setReducerClass(WordCountReducer.class);

              job.setInputFormatClass(TextInputFormat.class);

              job.setOutputFormatClass(TextOutputFormat.class);

              FileInputFormat.addInputPath(job, new Path("hdfs://localhost:9000/yun/input_wordcount.txt"));// 输入路径

              FileOutputFormat.setOutputPath(job, new Path("hdfs://localhost:9000/yun/output_wordcount"));// 输出路径

              job.waitForCompletion(true);

       }

}

 

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {

       @Override

       protected void reduce(Text arg0, Iterable<LongWritable> arg1,

                     Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {

              int sum = 0;

              for (LongWritable num : arg1) {

                     sum += num.get();

              }

              context.write(arg0, new LongWritable(sum));

       }

}

 

import java.io.IOException;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {

       @Override

       protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)

                     throws IOException, InterruptedException {

              String[] words = StringUtils.split(value.toString(), " ");

              for (String word : words) {

                     context.write(new Text(word), new LongWritable(1));

              }

       }

}

运行结果:

 

 

 

posted @   谦寻  阅读(47)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示