UVA - 11346 Probability (概率)
Description
Time Limit: 1 sec Memory Limit: 16MB
Consider rectangular coordinate system and point L(X,Y) which is randomly chosen among all points in the area A which is defined in the following manner: A = {(x,y) | x is from interval [-a;a]; y is from interval [-b;b]}. What is the probability P that the area of a rectangle that is defined by points (0,0) and (X,Y) will be greater than S?
INPUT:
The number of tests N <= 200 is given on the first line of input. Then N lines with one test case on each line follow. The test consists of 3 real numbers a > 0, b > 0 ir S => 0.
OUTPUT:
For each test case you should output one number P and percentage " %
" symbol following that number on a single line. P must be rounded to 6 digits after decimal point.
SAMPLE INPUT:
3 10 5 20 1 1 1 2 2 0
SAMPLE OUTPUT:
23.348371%
0.000000%
100.000000%
题意:给定a,b,s要求在[-a,a]选定x,在[-b,b]选定y,使得(0, 0)和(a,b)组成的矩形面积大于s的概率
思路:只需要求第一象限的即可,转换成a*b>s的图形面积,利用求导函数求面积的方式计算,总面积为m=a*b,求所以概率为(m-s-s*log(m/s))/m.
#include <iostream> #include <cstdio> #include <cmath> using namespace std; int main (){ int num; scanf("%d",&num); while(num--){ double a,b,s; scanf("%lf%lf%lf",&a,&b,&s); if(s > a*b) printf("0.000000%%\n"); else if(s ==0) printf("100.000000%%\n"); else{ double m = a * b; double ans = (m - s - s * log(m/s)) / m; printf("%.6lf%%\n",ans*100); } } return 0; }