课程五(Sequence Models),第二 周(Natural Language Processing & Word Embeddings) —— 2.Programming assignments:Emojify

Emojify!

Welcome to the second assignment of Week 2. You are going to use word vector representations to build an Emojifier.

Have you ever wanted to make your text messages more expressive? Your emojifier app will help you do that. So rather than writing "Congratulations on the promotion! Lets get coffee and talk. Love you!" the emojifier can automatically turn this into "Congratulations on the promotion! 👍 Lets get coffee and talk. ☕️ Love you! ❤️"

You will implement a model which inputs a sentence (such as "Let's go see the baseball game tonight!") and finds the most appropriate emoji to be used with this sentence (⚾️). In many emoji interfaces, you need to remember that ❤️ is the "heart" symbol rather than the "love" symbol. But using word vectors, you'll see that even if your training set explicitly relates only a few words to a particular emoji, your algorithm will be able to generalize and associate words in the test set to the same emoji even if those words don't even appear in the training set. This allows you to build an accurate classifier mapping from sentences to emojis, even using a small training set.

In this exercise, you'll start with a baseline model (Emojifier-V1) using word embeddings, then build a more sophisticated model (Emojifier-V2) that further incorporates an LSTM.

Lets get started! Run the following cell to load the package you are going to use.

【中文翻译】

Emojify!
欢迎来到2周的第二次作业。您将使用 词矢量表示 生成 Emojifier。

你有没有想过让你的短信更有表现力?您的 emojifier 应用程序将帮助您做到这一点。所以不要写 "恭喜你升职了!我们去喝咖啡, 聊天。爱你! "emojifier 可以自动将其变成 " 恭喜升级!👍让我们喝咖啡和聊天。☕️爱你!❤️ "

你将实现一个模型, 输入一个句子 (如 "让我们去看看今晚的棒球比赛! "), 并找到最合适的 emoji 表情使用这个句子 (⚾️)。在许多 emoji 表情接口中, 您需要记住❤️是 "心 " 符号而不是 "爱 " 符号。但是, 使用 词向量, 您将看到, 即使您的训练集明确地只与特定的 emoji 表情相关, 您的算法也能够将测试集中的单词泛化并关联到相同的 emoji 表情, 即使这些单词甚至在训练集中都不出现。这使您可以建立一个精确的分类器映射从句子到 emojis, 甚至使用一个小的训练集。

在本练习中, 您将使用 word 嵌入从基线模型 (Emojifier-V1) 开始, 然后构建更复杂的模型 (Emojifier-V2), 进一步合并 LSTM。

让我们开始吧!运行以下单元格以加载要使用的包。

【code】

import numpy as np
from emo_utils import *
import emoji
import matplotlib.pyplot as plt

%matplotlib inline

 

1 - Baseline model: Emojifier-V1

1.1 - Dataset EMOJISET

Let's start by building a simple baseline classifier.

You have a tiny dataset (X, Y) where:

  • X contains 127 sentences (strings)
  • Y contains a integer label between 0 and 4 corresponding to an emoji for each sentence

Let's load the dataset using the code below. We split the dataset between training (127 examples) and testing (56 examples).

【code】 

X_train, Y_train = read_csv('data/train_emoji.csv')
X_test, Y_test = read_csv('data/tesss.csv')
maxLen = len(max(X_train, key=len).split())

 

Run the following cell to print sentences from X_train and corresponding labels from Y_train. Change index to see different examples. Because of the font the iPython notebook uses, the heart emoji may be colored black rather than red.

【code】

index = 1
print(X_train[index], label_to_emoji(Y_train[index]))

【result】

I am proud of your achievements 😄

 

1.2 - Overview of the Emojifier-V1

In this part, you are going to implement a baseline model called "Emojifier-v1".

The input of the model is a string corresponding to a sentence (e.g. "I love you). In the code, the output will be a probability vector of shape (5,1), that you then pass in an argmax layer to extract the index of the most likely emoji output.

 

To get our labels into a format suitable for training a softmax classifier, lets convert Y<span id="MathJax-Span-2" class="mrow"><span id="MathJax-Span-3" class="mi"> from its current shape current shape (m,1) into a "one-hot representation" (m,5), where each row is a one-hot vector giving the label of one example, You can do so using this next code snipper. Here, Y_oh stands for "Y-one-hot" in the variable names Y_oh_train and Y_oh_test:

【code】

Y_oh_train = convert_to_one_hot(Y_train, C = 5)
Y_oh_test = convert_to_one_hot(Y_test, C = 5)

Let's see what convert_to_one_hot() did. Feel free to change index to print out different values. 

【code】

index = 50
print(Y_train[index], "is converted into one hot", Y_oh_train[index])

【result】

0 is converted into one hot [ 1.  0.  0.  0.  0.]

All the data is now ready to be fed into the Emojify-V1 model. Let's implement the model!

 

1.3 - Implementing Emojifier-V1

As shown in Figure (2), the first step is to convert an input sentence into the word vector representation, which then get averaged together. Similar to the previous exercise, we will use pretrained 50-dimensional GloVe embeddings. Run the following cell to load the word_to_vec_map, which contains all the vector representations.

【code】

word_to_index, index_to_word, word_to_vec_map = read_glove_vecs('data/glove.6B.50d.txt')

 

You've loaded:

  • word_to_index: dictionary mapping from words to their indices in the vocabulary (400,001 words, with the valid indices ranging from 0 to 400,000)
  • index_to_word: dictionary mapping from indices to their corresponding words in the vocabulary
  • word_to_vec_map: dictionary mapping words to their GloVe vector representation.

Run the following cell to check if it works.

【code】

word = "cucumber"
index = 289846
print("the index of", word, "in the vocabulary is", word_to_index[word])
print("the", str(index) + "th word in the vocabulary is", index_to_word[index])

【result】

the index of cucumber in the vocabulary is 113317
the 289846th word in the vocabulary is potatos

 

Exercise: Implement sentence_to_avg(). You will need to carry out two steps:

  1. Convert every sentence to lower-case, then split the sentence into a list of words. X.lower() and X.split() might be useful.
  2. For each word in the sentence, access its GloVe representation. Then, average all these values.

【中文翻译】

练习: 实施 sentence_to_avg ()。您将需要执行两个步骤:

将每个句子转换为小写, 然后将句子拆分为单词列表。X.lower() 和 X.split()  可能有用。
对于句子中的每个单词, 获得它的GloVe表示。然后, 平均所有这些值。

【code】

 

# GRADED FUNCTION: sentence_to_avg

def sentence_to_avg(sentence, word_to_vec_map):
    """
    Converts a sentence (string) into a list of words (strings). Extracts the GloVe representation of each word
    and averages its value into a single vector encoding the meaning of the sentence.
    
    Arguments:
    sentence -- string, one training example from X
    word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation
    
    Returns:
    avg -- average vector encoding information about the sentence, numpy-array of shape (50,)
    """
    
    ### START CODE HERE ###
    # Step 1: Split sentence into list of lower case words (≈ 1 line)
    words = sentence.lower().split()          # words 是list类型的

    # Initialize the average word vector, should have the same shape as your word vectors.
    avg = np.zeros((50,))
    
    # Step 2: average the word vectors. You can loop over the words in the list "words".
    for w in words:
        avg += word_to_vec_map[w]
    avg = avg/len(words)
    
    ### END CODE HERE ###
    
    return avg
avg = sentence_to_avg("Morrocan couscous is my favorite dish", word_to_vec_map)
print("avg = ", avg)

【result】

avg =  [-0.008005    0.56370833 -0.50427333  0.258865    0.55131103  0.03104983
 -0.21013718  0.16893933 -0.09590267  0.141784   -0.15708967  0.18525867
  0.6495785   0.38371117  0.21102167  0.11301667  0.02613967  0.26037767
  0.05820667 -0.01578167 -0.12078833 -0.02471267  0.4128455   0.5152061
  0.38756167 -0.898661   -0.535145    0.33501167  0.68806933 -0.2156265
  1.797155    0.10476933 -0.36775333  0.750785    0.10282583  0.348925
 -0.27262833  0.66768    -0.10706167 -0.283635    0.59580117  0.28747333
 -0.3366635   0.23393817  0.34349183  0.178405    0.1166155  -0.076433
  0.1445417   0.09808667]

Expected Output:】

avg= [-0.008005 0.56370833 -0.50427333 0.258865 0.55131103 0.03104983 -0.21013718 0.16893933 -0.09590267 0.141784 -0.15708967 0.18525867 0.6495785 0.38371117 0.21102167 0.11301667 0.02613967 0.26037767 0.05820667 -0.01578167 -0.12078833 -0.02471267 0.4128455 0.5152061 0.38756167 -0.898661 -0.535145 0.33501167 0.68806933 -0.2156265 1.797155 0.10476933 -0.36775333 0.750785 0.10282583 0.348925 -0.27262833 0.66768 -0.10706167 -0.283635 0.59580117 0.28747333 -0.3366635 0.23393817 0.34349183 0.178405 0.1166155 -0.076433 0.1445417 0.09808667]

 

Model

You now have all the pieces to finish implementing the model() function. After using sentence_to_avg() you need to pass the average through forward propagation, compute the cost, and then backpropagate to update the softmax's parameters.

Exercise: Implement the model() function described in Figure (2). Assuming here that <span id="MathJax-Span-19" class="mrow"><span id="MathJax-Span-20" class="mi">Y<span id="MathJax-Span-21" class="mi">o<span id="MathJax-Span-22" class="mi">hYoh ("Y one hot") is the one-hot encoding of the output labels, the equations you need to implement in the forward pass and to compute the cross-entropy cost are:

We provided you a function softmax().

【code】

# GRADED FUNCTION: model

def model(X, Y, word_to_vec_map, learning_rate = 0.01, num_iterations = 400):
    """
    Model to train word vector representations in numpy.
    
    Arguments:
    X -- input data, numpy array of sentences as strings, of shape (m, 1)
    Y -- labels, numpy array of integers between 0 and 7, numpy-array of shape (m, 1)
    word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation
    learning_rate -- learning_rate for the stochastic gradient descent algorithm
    num_iterations -- number of iterations
    
    Returns:
    pred -- vector of predictions, numpy-array of shape (m, 1)
    W -- weight matrix of the softmax layer, of shape (n_y, n_h)
    b -- bias of the softmax layer, of shape (n_y,)
    """
    
    np.random.seed(1)

    # Define number of training examples
    m = Y.shape[0]                          # number of training examples
    n_y = 5                                 # number of classes  
    n_h = 50                                # dimensions of the GloVe vectors 
    
    # Initialize parameters using Xavier initialization
    W = np.random.randn(n_y, n_h) / np.sqrt(n_h)
    b = np.zeros((n_y,))
    
    # Convert Y to Y_onehot with n_y classes
    Y_oh = convert_to_one_hot(Y, C = n_y)      # (m,n_y)
    
    # Optimization loop
    for t in range(num_iterations):                       # Loop over the number of iterations
        for i in range(m):                                # Loop over the training examples
            
            ### START CODE HERE ### (≈ 4 lines of code)
            # Average the word vectors of the words from the i'th training example
            avg = sentence_to_avg(X[i], word_to_vec_map)

            # Forward propagate the avg through the softmax layer
            z = np.dot(W,avg)+b
            a = softmax(z)

            # Compute cost using the i'th training label's one hot representation and "A" (the output of the softmax)
            cost = - np.dot(Y_oh[i],np.log(a)) 
            ### END CODE HERE ###
            
            # Compute gradients 
            dz = a - Y_oh[i]
            dW = np.dot(dz.reshape(n_y,1), avg.reshape(1, n_h))
            db = dz

            # Update parameters with Stochastic Gradient Descent
            W = W - learning_rate * dW
            b = b - learning_rate * db
        
        if t % 100 == 0:
            print("Epoch: " + str(t) + " --- cost = " + str(cost))
            pred = predict(X, Y, W, b, word_to_vec_map)

    return pred, W, b
print(X_train.shape)
print(Y_train.shape)
print(np.eye(5)[Y_train.reshape(-1)].shape)
print(X_train[0])
print(type(X_train))
Y = np.asarray([5,0,0,5, 4, 4, 4, 6, 6, 4, 1, 1, 5, 6, 6, 3, 6, 3, 4, 4])
print(Y.shape)

X = np.asarray(['I am going to the bar tonight', 'I love you', 'miss you my dear',
 'Lets go party and drinks','Congrats on the new job','Congratulations',
 'I am so happy for you', 'Why are you feeling bad', 'What is wrong with you',
 'You totally deserve this prize', 'Let us go play football',
 'Are you down for football this afternoon', 'Work hard play harder',
 'It is suprising how people can be dumb sometimes',
 'I am very disappointed','It is the best day in my life',
 'I think I will end up alone','My life is so boring','Good job',
 'Great so awesome'])

print(X.shape)
print(np.eye(5)[Y_train.reshape(-1)].shape)
print(type(X_train))

【result】

(132,)
(132,)
(132, 5)
never talk to me again
<class 'numpy.ndarray'>
(20,)
(20,)
(132, 5)
<class 'numpy.ndarray'>

【result】

(132,)
(132,)
(132, 5)
never talk to me again
<class 'numpy.ndarray'>
(20,)
(20,)
(132, 5)
<class 'numpy.ndarray'>

  

Run the next cell to train your model and learn the softmax parameters (W,b).

【code】

pred, W, b = model(X_train, Y_train, word_to_vec_map)
print(pred)

【result】

Epoch: 0 --- cost = 1.95204988128
Accuracy: 0.348484848485
Epoch: 100 --- cost = 0.0797181872601
Accuracy: 0.931818181818
Epoch: 200 --- cost = 0.0445636924368
Accuracy: 0.954545454545
Epoch: 300 --- cost = 0.0343226737879
Accuracy: 0.969696969697

Expected Output (on a subset of iterations)

Epoch: 0	cost = 1.95204988128	Accuracy: 0.348484848485
Epoch: 100	cost = 0.0797181872601	Accuracy: 0.931818181818
Epoch: 200	cost = 0.0445636924368	Accuracy: 0.954545454545
Epoch: 300	cost = 0.0343226737879	Accuracy: 0.969696969697

Great! Your model has pretty high accuracy on the training set. Lets now see how it does on the test set. 

 

1.4 - Examining test set performance

print("Training set:")
pred_train = predict(X_train, Y_train, W, b, word_to_vec_map)
print('Test set:')
pred_test = predict(X_test, Y_test, W, b, word_to_vec_map)

【result】

Training set:
Accuracy: 0.977272727273
Test set:
Accuracy: 0.857142857143

【Expected Output】

Train set accuracy	97.7
Test set accuracy	85.7

 

Random guessing would have had 20% accuracy given that there are 5 classes. This is pretty good performance after training on only 127 examples.

In the training set, the algorithm saw the sentence "I love you" with the label ❤️. You can check however that the word "adore" does not appear in the training set. Nonetheless, lets see what happens if you write "I adore you."

【code】

X_my_sentences = np.array(["i adore you", "i love you", "funny lol", "lets play with a ball", "food is ready", "not feeling happy"])
Y_my_labels = np.array([[0], [0], [2], [1], [4],[3]])

pred = predict(X_my_sentences, Y_my_labels , W, b, word_to_vec_map)
print_predictions(X_my_sentences, pred)

【result】

Accuracy: 0.833333333333

i adore you ❤️
i love you ❤️
funny lol 😄
lets play with a ball ⚾
food is ready 🍴
not feeling happy 😄

  

Amazing! Because adore has a similar embedding as love, the algorithm has generalized correctly even to a word it has never seen before. Words such as heartdearbeloved or adore have embedding vectors similar to love, and so might work too---feel free to modify the inputs above and try out a variety of input sentences. How well does it work?

Note though that it doesn't get "not feeling happy" correct. This algorithm ignores word ordering, so is not good at understanding phrases like "not happy."

 

Printing the confusion matrix can also help understand which classes are more difficult for your model. A confusion matrix shows how often an example whose label is one class ("actual" class) is mislabeled by the algorithm with a different class ("predicted" class).

【code】

print(Y_test.shape)
print('           '+ label_to_emoji(0)+ '    ' + label_to_emoji(1) + '    ' +  label_to_emoji(2)+ '    ' + label_to_emoji(3)+'   ' + label_to_emoji(4))
print(pd.crosstab(Y_test, pred_test.reshape(56,), rownames=['Actual'], colnames=['Predicted'], margins=True))
plot_confusion_matrix(Y_test, pred_test)

【result】

What you should remember from this part:

  • Even with a 127 training examples, you can get a reasonably good model for Emojifying. This is due to the generalization power word vectors gives you.
  • Emojify-V1 will perform poorly on sentences such as "This movie is not good and not enjoyable" because it doesn't understand combinations of words--it just averages all the words' embedding vectors together, without paying attention to the ordering of words. You will build a better algorithm in the next part.

 

  

2 - Emojifier-V2: Using LSTMs in Keras:

Let's build an LSTM model that takes as input word sequences. This model will be able to take word ordering into account. Emojifier-V2 will continue to use pre-trained word embeddings to represent words, but will feed them into an LSTM, whose job it is to predict the most appropriate emoji.

【中文翻译】

让我们构建一个输入为词序列的 LSTM 模型。这个模型将能够考虑到词排序。Emojifier-V2 将继续使用预先训练过的词嵌入来表示单词, 但会将它们喂入 LSTM, 其工作是预测最合适的 emoji 表情。
 

Run the following cell to load the Keras packages.

【code】

import numpy as np
np.random.seed(0)
from keras.models import Model
from keras.layers import Dense, Input, Dropout, LSTM, Activation
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from keras.initializers import glorot_uniform
np.random.seed(1)

  

 

2.1 - Overview of the model

Here is the Emojifier-v2 you will implement:

 

 

2.2 Keras and mini-batching

In this exercise, we want to train Keras using mini-batches. However, most deep learning frameworks require that all sequences in the same mini-batch have the same length. This is what allows vectorization to work: If you had a 3-word sentence and a 4-word sentence, then the computations needed for them are different (one takes 3 steps of an LSTM, one takes 4 steps) so it's just not possible to do them both at the same time.

The common solution to this is to use padding. Specifically, set a maximum sequence length, and pad all sequences to the same length. For example, of the maximum sequence length is 20, we could pad every sentence with "0"s so that each input sentence is of length 20. Thus, a sentence "i love you" would be represented as <span id="MathJax-Span-124" class="mrow"><span id="MathJax-Span-125" class="mo">(<span id="MathJax-Span-126" class="msubsup"><span id="MathJax-Span-127" class="mi">e<span id="MathJax-Span-128" class="texatom"><span id="MathJax-Span-129" class="mrow"><span id="MathJax-Span-130" class="mi"><sub>i</sub><span id="MathJax-Span-131" class="mo">,<span id="MathJax-Span-132" class="msubsup"><span id="MathJax-Span-133" class="mi">e<span id="MathJax-Span-134" class="texatom"><span id="MathJax-Span-135" class="mrow"><span id="MathJax-Span-136" class="mi"><sub>l</sub><span id="MathJax-Span-137" class="mi"><sub>o</sub><span id="MathJax-Span-138" class="mi"><sub>v</sub><span id="MathJax-Span-139" class="mi"><sub>e</sub><span id="MathJax-Span-140" class="mo">,<span id="MathJax-Span-141" class="msubsup"><span id="MathJax-Span-142" class="mi">e<span id="MathJax-Span-143" class="texatom"><span id="MathJax-Span-144" class="mrow"><span id="MathJax-Span-145" class="mi"><sub>y</sub><span id="MathJax-Span-146" class="mi"><sub>o</sub><span id="MathJax-Span-147" class="mi"><sub>u</sub><span id="MathJax-Span-148" class="mo">,<span id="MathJax-Span-149" class="texatom"><span id="MathJax-Span-150" class="mrow"><span id="MathJax-Span-151" class="munderover"><span id="MathJax-Span-152" class="mn">0<span id="MathJax-Span-153" class="mo">⃗&nbsp;<span id="MathJax-Span-154" class="mo">,<span id="MathJax-Span-155" class="texatom"><span id="MathJax-Span-156" class="mrow"><span id="MathJax-Span-157" class="munderover"><span id="MathJax-Span-158" class="mn">0<span id="MathJax-Span-159" class="mo">⃗&nbsp;<span id="MathJax-Span-160" class="mo">,<span id="MathJax-Span-161" class="mo">&hellip;<span id="MathJax-Span-162" class="mo">,<span id="MathJax-Span-163" class="texatom"><span id="MathJax-Span-164" class="mrow"><span id="MathJax-Span-165" class="munderover"><span id="MathJax-Span-166" class="mn">0<span id="MathJax-Span-167" class="mo">⃗&nbsp;<span id="MathJax-Span-168" class="mo">). In this example, any sentences longer than 20 words would have to be truncated. One simple way to choose the maximum sequence length is to just pick the length of the longest sentence in the training set.

【中文翻译】

在本练习中, 我们想用小批量训练 Keras。但是, 大多数深层学习框架要求同一小批中的所有序列具有相同的长度。这就是允许矢量化的工作: 如果你有一个3字的句子和一个4字的句子, 那么他们所需要的计算是不同的 (一个人采取了3个步骤的 LSTM, 一个采取4步骤), 所以在同一时间来处理这是不可能的。

此方法的常见解决方案是使用填充。具体地说, 设置一个最大序列长度, 并将所有序列填充到相同的长度。例如, 最大序列长度是 20, 我们可以用 "0 " 来填充每个句子, 以便每个输入语句长度为20。因此, 一个句子 "我爱你 " 将代表 (ei,elove,eyou,0⃗, 0⃗,..., 0⃗) (ei,elove,eyou,0→,0→,..., 0→)。在这个例子中, 任何超过20字的句子都必须截断。选择最大序列长度的一个简单方法是在训练集中选取最长句子的长度。

 

2.3 - The Embedding layer

In Keras, the embedding matrix is represented as a "layer", and maps positive integers (indices corresponding to words) into dense vectors of fixed size (the embedding vectors). It can be trained or initialized with a pretrained embedding. In this part, you will learn how to create an Embedding() layer in Keras, initialize it with the GloVe 50-dimensional vectors loaded earlier in the notebook. Because our training set is quite small, we will not update the word embeddings but will instead leave their values fixed. But in the code below, we'll show you how Keras allows you to either train or leave fixed this layer.

The Embedding() layer takes an integer matrix of size (batch size, max input length) as input. This corresponds to sentences converted into lists of indices (integers), as shown in the figure below.

The largest integer (i.e. word index) in the input should be no larger than the vocabulary size. The layer outputs an array of shape (batch size, max input length, dimension of word vectors).

The first step is to convert all your training sentences into lists of indices, and then zero-pad all these lists so that their length is the length of the longest sentence.

Exercise: Implement the function below to convert X (array of sentences as strings) into an array of indices corresponding to words in the sentences. The output shape should be such that it can be given to Embedding() (described in Figure 4).

 

 

【中文翻译】

在 Keras 中, 嵌入矩阵表示为 "图层 ", 并将正整数 (对应于单词的索引) 映射成固定大小的dense向量 (嵌入向量)。可以使用 pretrained的 嵌入来训练或初始化它。在这一部分中, 您将学习如何在 Keras 中创建 Embedding() layer  , 并用笔记本中前面加载的GloVe50维向量初始化它。因为我们的训练集很小, 我们不会更新单词嵌入, 而是将它们的值固定下来。但是在下面的代码中, 我们将向您展示如何 Keras 允许您训练或固定这一层。

 Embedding() layer 采用整数矩阵的大小 (批大小, 最大输入长度) 作为输入。这对应于转换成索引列表 (整数) 的句子, 如下图所示。

图见英文部分

 

输入中最大的整数 (即单词索引) 不应大于词汇量。该层输出一个形状数组 (批大小、最大输入长度、词向量的尺寸)。 

第一步是将所有训练句子转换为索引列表, 然后将所有这些列表零填充, 以便其长度是最长句子的长度。

 

练习: 实现下面的函数将 X (字符串句子数组) 转换成与句子中的单词对应的索引数组。输出形状应该是这样的, 它可以被赋予Embedding()层(如图4所示)。

【code】

# GRADED FUNCTION: sentences_to_indices

def sentences_to_indices(X, word_to_index, max_len):
    """
    Converts an array of sentences (strings) into an array of indices corresponding to words in the sentences.
    The output shape should be such that it can be given to `Embedding()` (described in Figure 4). 
    
    Arguments:
    X -- array of sentences (strings), of shape (m, 1)
    word_to_index -- a dictionary containing the each word mapped to its index
    max_len -- maximum number of words in a sentence. You can assume every sentence in X is no longer than this. 
    
    Returns:
    X_indices -- array of indices corresponding to words in the sentences from X, of shape (m, max_len)
    """
    
    m = X.shape[0]                                   # number of training examples
    
    ### START CODE HERE ###
    # Initialize X_indices as a numpy matrix of zeros and the correct shape (≈ 1 line)
    X_indices = np.zeros(((m, max_len)))
    
    for i in range(m):                               # loop over training examples
        
        # Convert the ith training sentence in lower case and split is into words. You should get a list of words.
        sentence_words =X[i].lower().split() 
        
        # Initialize j to 0
        j = 0
        
        # Loop over the words of sentence_words
        for w in sentence_words:
            # Set the (i,j)th entry of X_indices to the index of the correct word.
            X_indices[i, j] = word_to_index[w]
            # Increment j to j + 1
            j = j+1
            
    ### END CODE HERE ###
    
    return X_indices

 

Run the following cell to check what sentences_to_indices() does, and check your results.

【code】

 

X1 = np.array(["funny lol", "lets play baseball", "food is ready for you"])
X1_indices = sentences_to_indices(X1,word_to_index, max_len = 5)
print("X1 =", X1)
print("X1_indices =", X1_indices)

【result】

X1 = ['funny lol' 'lets play baseball' 'food is ready for you']
X1_indices = [[ 155345.  225122.       0.       0.       0.]
 [ 220930.  286375.   69714.       0.       0.]
 [ 151204.  192973.  302254.  151349.  394475.]]

Expected Output

X1 =	['funny lol' 'lets play football' 'food is ready for you']
X1_indices =	[[ 155345. 225122. 0. 0. 0.] 
[ 220930. 286375. 151266. 0. 0.] 
[ 151204. 192973. 302254. 151349. 394475.]]

 

Let's build the Embedding() layer in Keras, using pre-trained word vectors. After this layer is built, you will pass the output of sentences_to_indices() to it as an input, and the Embedding() layer will return the word embeddings for a sentence. 

 

Exercise: Implement pretrained_embedding_layer(). You will need to carry out the following steps:

  1. Initialize the embedding matrix as a numpy array of zeroes with the correct shape.
  2. Fill in the embedding matrix with all the word embeddings extracted from word_to_vec_map.
  3. Define Keras embedding layer. Use Embedding(). Be sure to make this layer non-trainable, by setting trainable = False when calling Embedding(). If you were to set trainable = True, then it will allow the optimization algorithm to modify the values of the word embeddings.
  4. Set the embedding weights to be equal to the embedding matrix.

【中文翻译】

让我们用预先训练的词向量在 Keras 中构建Embedding() layer。生成此层后, 将 sentences_to_indices () 的输出作为输入传递给它, the Embedding() layer将返回一个句子的 word embeddings。

练习: 实现 pretrained_embedding_layer ()。您将需要执行以下步骤:

  1、将embedding matrix初始化为具有正确形状的零 numpy 数组。
  2、填写embedding matrix的所有word embeddings,这些word embeddings从 word_to_vec_map 提取。
  3、定义 Keras 嵌入层。使用Embedding()。请确保在调用Embedding() 时设置trainable = False, 使此层不可训练。如果要设置trainable = True, 则它将允许优化算法修改               word embeddings的值。
  4、将embedding weights设置为the embedding matrix。

 【code】

# GRADED FUNCTION: pretrained_embedding_layer

def pretrained_embedding_layer(word_to_vec_map, word_to_index):
    """
    Creates a Keras Embedding() layer and loads in pre-trained GloVe 50-dimensional vectors.
    
    Arguments:
    word_to_vec_map -- dictionary mapping words to their GloVe vector representation.
    word_to_index -- dictionary mapping from words to their indices in the vocabulary (400,001 words) ,词汇表里有40,000个,或者加上未知词就是40,001维

    Returns:
    embedding_layer -- pretrained layer Keras instance
    """
    
    vocab_len = len(word_to_index) + 1                  # adding 1 to fit Keras embedding (requirement)
    emb_dim = word_to_vec_map["cucumber"].shape[0]      # define dimensionality of your GloVe word vectors (= 50)
    
    ### START CODE HERE ###
    # Initialize the embedding matrix as a numpy array of zeros of shape (vocab_len, dimensions of word vectors = emb_dim)
    emb_matrix = np.zeros((vocab_len, emb_dim))
    
    # Set each row "index" of the embedding matrix to be the word vector representation of the "index"th word of the vocabulary
    for word, index in word_to_index.items():
        emb_matrix[index, :] = word_to_vec_map[word]

    # Define Keras embedding layer with the correct output/input sizes, make it trainable. Use Embedding(...). Make sure to set trainable=False. 
    embedding_layer = Embedding(vocab_len, emb_dim, trainable=False)
    ### END CODE HERE ###

    # Build the embedding layer, it is required before setting the weights of the embedding layer. Do not modify the "None".
    embedding_layer.build((None,))
    
    # Set the weights of the embedding layer to the embedding matrix. Your layer is now pretrained.
    embedding_layer.set_weights([emb_matrix])
    
    return embedding_layer
embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index)
print("weights[0][1][3] =", embedding_layer.get_weights()[0][1][3])

【result】

weights[0][1][3] = -0.3403

【Expected Output:】

weights[0][1][3] =	-0.3403

 

2.3 Building the Emojifier-V2

Lets now build the Emojifier-V2 model. You will do so using the embedding layer you have built, and feed its output to an LSTM network.

Exercise: Implement Emojify_V2(), which builds a Keras graph of the architecture shown in Figure 3. The model takes as input an array of sentences of shape (mmax_len, ) defined by input_shape. It should output a softmax probability vector of shape (mC = 5). You may need Input(shape = ..., dtype = '...')LSTM()Dropout()Dense(), and Activation().  

【code】

# GRADED FUNCTION: Emojify_V2

def Emojify_V2(input_shape, word_to_vec_map, word_to_index):
    """
    Function creating the Emojify-v2 model's graph.
    
    Arguments:
    input_shape -- shape of the input, usually (max_len,)
    word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation
    word_to_index -- dictionary mapping from words to their indices in the vocabulary (400,001 words)

    Returns:
    model -- a model instance in Keras
    """
    
    ### START CODE HERE ###
    # Define sentence_indices as the input of the graph, it should be of shape input_shape and dtype 'int32' (as it contains indices).
    sentence_indices = Input(shape = input_shape, dtype =np.int32)
    
    # Create the embedding layer pretrained with GloVe Vectors (≈1 line)
    embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index)
    
    # Propagate sentence_indices through your embedding layer, you get back the embeddings
    embeddings = embedding_layer(sentence_indices) 
    
    # Propagate the embeddings through an LSTM layer with 128-dimensional hidden state
    # Be careful, the returned output should be a batch of sequences.
    X = LSTM(128, return_sequences=True)(embeddings)
    # Add dropout with a probability of 0.5
    X = Dropout(rate=0.5)(X)
    # Propagate X trough another LSTM layer with 128-dimensional hidden state
    # Be careful, the returned output should be a single hidden state, not a batch of sequences.
    X = LSTM(128, return_sequences=False)(X)
    # Add dropout with a probability of 0.5
    X = Dropout(rate=0.5)(X)
    # Propagate X through a Dense layer with softmax activation to get back a batch of 5-dimensional vectors.
    X = Dense(5)(X)
    # Add a softmax activation
    X =Activation('softmax')(X)
    
    # Create Model instance which converts sentence_indices into X.
    model =  Model(inputs=sentence_indices, outputs=X)
    
    ### END CODE HERE ###
    
    return model

Run the following cell to create your model and check its summary. Because all sentences in the dataset are less than 10 words, we chose max_len = 10. You should see your architecture, it uses "20,223,927" parameters, of which 20,000,050 (the word embeddings) are non-trainable, and the remaining 223,877 are. Because our vocabulary size has 400,001 words (with valid indices from 0 to 400,000) there are 400,001*50 = 20,000,050 non-trainable parameters.

【code】

model = Emojify_V2((maxLen,), word_to_vec_map, word_to_index)
model.summary()

【result】

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_4 (InputLayer)         (None, 10)                0         
_________________________________________________________________
embedding_5 (Embedding)      (None, 10, 50)            20000050  
_________________________________________________________________
lstm_5 (LSTM)                (None, 10, 128)           91648     
_________________________________________________________________
dropout_4 (Dropout)          (None, 10, 128)           0         
_________________________________________________________________
lstm_6 (LSTM)                (None, 128)               131584    
_________________________________________________________________
dropout_5 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 5)                 645       
_________________________________________________________________
activation_2 (Activation)    (None, 5)                 0         
=================================================================
Total params: 20,223,927
Trainable params: 223,877
Non-trainable params: 20,000,050

As usual, after creating your model in Keras, you need to compile it and define what loss, optimizer and metrics your are want to use. Compile your model using categorical_crossentropy loss, adam optimizer and ['accuracy'] metrics:  

【code】

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

It's time to train your model. Your Emojifier-V2 model takes as input an array of shape (mmax_len) and outputs probability vectors of shape (mnumber of classes). We thus have to convert X_train (array of sentences as strings) to X_train_indices (array of sentences as list of word indices), and Y_train (labels as indices) to Y_train_oh (labels as one-hot vectors).  

【code】

X_train_indices = sentences_to_indices(X_train, word_to_index, maxLen)
Y_train_oh = convert_to_one_hot(Y_train, C = 5)

 

Fit the Keras model on X_train_indices and Y_train_oh. We will use epochs = 50 and batch_size = 32.

【code】

model.fit(X_train_indices, Y_train_oh, epochs = 50, batch_size = 32, shuffle=True)

【result】

Epoch 1/50
132/132 [==============================] - 1s - loss: 1.6088 - acc: 0.2273     
Epoch 2/50
132/132 [==============================] - 0s - loss: 1.5339 - acc: 0.2879     
Epoch 3/50
132/132 [==============================] - 0s - loss: 1.4531 - acc: 0.4697     
Epoch 4/50
132/132 [==============================] - 0s - loss: 1.3917 - acc: 0.4394     
Epoch 5/50
132/132 [==============================] - 0s - loss: 1.2940 - acc: 0.3788     
Epoch 6/50
132/132 [==============================] - 0s - loss: 1.2414 - acc: 0.4394     
Epoch 7/50
132/132 [==============================] - 0s - loss: 1.1108 - acc: 0.5909     
Epoch 8/50
132/132 [==============================] - 0s - loss: 1.0372 - acc: 0.6212     
Epoch 9/50
132/132 [==============================] - 0s - loss: 0.9162 - acc: 0.5985     
Epoch 10/50
132/132 [==============================] - 0s - loss: 0.8329 - acc: 0.6970     
Epoch 11/50
132/132 [==============================] - 0s - loss: 0.7440 - acc: 0.7348     
Epoch 12/50
132/132 [==============================] - 0s - loss: 0.6087 - acc: 0.7727     
Epoch 13/50
132/132 [==============================] - 0s - loss: 0.5808 - acc: 0.8106     
Epoch 14/50
132/132 [==============================] - 0s - loss: 0.5649 - acc: 0.7727     
Epoch 15/50
132/132 [==============================] - 0s - loss: 0.4279 - acc: 0.8561     
Epoch 16/50
132/132 [==============================] - 0s - loss: 0.7211 - acc: 0.7955     
Epoch 17/50
132/132 [==============================] - 0s - loss: 0.5015 - acc: 0.8182     
Epoch 18/50
132/132 [==============================] - 0s - loss: 0.4624 - acc: 0.8636     
Epoch 19/50
132/132 [==============================] - 0s - loss: 0.3523 - acc: 0.8636     
Epoch 20/50
132/132 [==============================] - 0s - loss: 0.3361 - acc: 0.8864     
Epoch 21/50
132/132 [==============================] - 0s - loss: 0.3162 - acc: 0.8939     
Epoch 22/50
132/132 [==============================] - 0s - loss: 0.2340 - acc: 0.9167     
Epoch 23/50
132/132 [==============================] - 0s - loss: 0.2422 - acc: 0.9167     
Epoch 24/50
132/132 [==============================] - 0s - loss: 0.1852 - acc: 0.9470     
Epoch 25/50
132/132 [==============================] - 0s - loss: 0.3097 - acc: 0.8939     
Epoch 26/50
132/132 [==============================] - 0s - loss: 0.2162 - acc: 0.9091     
Epoch 27/50
132/132 [==============================] - 0s - loss: 0.1573 - acc: 0.9545     
Epoch 28/50
132/132 [==============================] - 0s - loss: 0.2023 - acc: 0.9167     
Epoch 29/50
132/132 [==============================] - 0s - loss: 0.2202 - acc: 0.9394     
Epoch 30/50
132/132 [==============================] - 0s - loss: 0.1721 - acc: 0.9318     
Epoch 31/50
132/132 [==============================] - 0s - loss: 0.1031 - acc: 0.9773     
Epoch 32/50
132/132 [==============================] - 0s - loss: 0.1086 - acc: 0.9697     
Epoch 33/50
132/132 [==============================] - 0s - loss: 0.0987 - acc: 0.9621     
Epoch 34/50
132/132 [==============================] - 0s - loss: 0.0622 - acc: 0.9924     
Epoch 35/50
132/132 [==============================] - 0s - loss: 0.0750 - acc: 0.9697     
Epoch 36/50
132/132 [==============================] - 0s - loss: 0.0609 - acc: 0.9924     
Epoch 37/50
132/132 [==============================] - 0s - loss: 0.0471 - acc: 1.0000     
Epoch 38/50
132/132 [==============================] - 0s - loss: 0.2247 - acc: 0.9318     
Epoch 39/50
132/132 [==============================] - 0s - loss: 0.7130 - acc: 0.8636     
Epoch 40/50
132/132 [==============================] - 0s - loss: 1.1835 - acc: 0.7500     
Epoch 41/50
132/132 [==============================] - 0s - loss: 0.5726 - acc: 0.7955     
Epoch 42/50
132/132 [==============================] - 0s - loss: 0.2467 - acc: 0.9091     
Epoch 43/50
132/132 [==============================] - 0s - loss: 0.2652 - acc: 0.9015     
Epoch 44/50
132/132 [==============================] - 0s - loss: 0.2657 - acc: 0.9091     
Epoch 45/50
132/132 [==============================] - 0s - loss: 0.1362 - acc: 0.9621     
Epoch 46/50
132/132 [==============================] - 0s - loss: 0.1336 - acc: 0.9545     
Epoch 47/50
132/132 [==============================] - 0s - loss: 0.1237 - acc: 0.9394     
Epoch 48/50
132/132 [==============================] - 0s - loss: 0.1088 - acc: 0.9773     
Epoch 49/50
132/132 [==============================] - 0s - loss: 0.0875 - acc: 0.9848     
Epoch 50/50
132/132 [==============================] - 0s - loss: 0.0931 - acc: 0.9773     

 

Your model should perform close to 100% accuracy on the training set. The exact accuracy you get may be a little different. Run the following cell to evaluate your model on the test set.

【code】

X_test_indices = sentences_to_indices(X_test, word_to_index, max_len = maxLen)
Y_test_oh = convert_to_one_hot(Y_test, C = 5)
loss, acc = model.evaluate(X_test_indices, Y_test_oh)
print()
print("Test accuracy = ", acc)

【result】

32/56 [================>.............] - ETA: 0s
Test accuracy =  0.857142865658

You should get a test accuracy between 80% and 95%. Run the cell below to see the mislabelled examples.

【code】

# This code allows you to see the mislabelled examples
C = 5
y_test_oh = np.eye(C)[Y_test.reshape(-1)]
X_test_indices = sentences_to_indices(X_test, word_to_index, maxLen)
pred = model.predict(X_test_indices)
for i in range(len(X_test)):
    x = X_test_indices
    num = np.argmax(pred[i])
    if(num != Y_test[i]):
        print('Expected emoji:'+ label_to_emoji(Y_test[i]) + ' prediction: '+ X_test[i] + label_to_emoji(num).strip())

【result】

Expected emoji:😞 prediction: work is hard	😄
Expected emoji:😞 prediction: This girl is messing with me	❤️
Expected emoji:😞 prediction: work is horrible	😄
Expected emoji:🍴 prediction: any suggestions for dinner	😄
Expected emoji:😄 prediction: you brighten my day	❤️
Expected emoji:😞 prediction: she is a bully	❤️
Expected emoji:😞 prediction: My life is so boring	❤️
Expected emoji:😄 prediction: will you be my valentine	❤️

 

Now you can try it on your own example. Write your own sentence below. 

【code】 

# Change the sentence below to see your prediction. Make sure all the words are in the Glove embeddings.  
x_test = np.array(['not feeling happy'])
X_test_indices = sentences_to_indices(x_test, word_to_index, maxLen)
print(x_test[0] +' '+  label_to_emoji(np.argmax(model.predict(X_test_indices))))

【result】

not feeling happy 😞

 

Previously, Emojify-V1 model did not correctly label "not feeling happy," but our implementation of Emojiy-V2 got it right. (Keras' outputs are slightly random each time, so you may not have obtained the same result.) The current model still isn't very robust at understanding negation (like "not happy") because the training set is small and so doesn't have a lot of examples of negation(否定). But if the training set were larger, the LSTM model would be much better than the Emojify-V1 model at understanding such complex sentences. 

 

Congratulations!

You have completed this notebook! ❤️❤️❤️

What you should remember:

  • If you have an NLP task where the training set is small, using word embeddings can help your algorithm significantly. Word embeddings allow your model to work on words in the test set that may not even have appeared in your training set.
  • Training sequence models in Keras (and in most other deep learning frameworks) requires a few important details:
    • To use mini-batches, the sequences need to be padded so that all the examples in a mini-batch have the same length.
    • An Embedding() layer can be initialized with pretrained values. These values can be either fixed or trained further on your dataset. If however your labeled dataset is small, it's usually not worth trying to train a large pre-trained set of embeddings.
    • LSTM() has a flag called return_sequences to decide if you would like to return every hidden states or only the last one.
    • You can use Dropout() right after LSTM() to regularize your network.

 

 

Congratulations on finishing this assignment and building an Emojifier. We hope you're happy with what you've accomplished in this notebook!

😀😀😀😀😀😀

 

Acknowledgments

Thanks to Alison Darcy and the Woebot team for their advice on the creation of this assignment. Woebot is a chatbot friend that is ready to speak with you 24/7. As part of Woebot's technology, it uses word embeddings to understand the emotions of what you say. You can play with it by going to http://woebot.io

 

 

posted @ 2018-03-26 00:54  AI菌  阅读(1236)  评论(0编辑  收藏  举报