【CF961G】Partitions

题面

洛谷

题解

显然对于所有点对答案的贡献都有一个相同的系数,设这个系数为\(X\),那么\(ans=X\sum w_i\)

枚举一个点所在集合的大小,有

\[\begin{aligned}\\ X&=\sum_{i=1}^n i{n-1\choose i-1}\begin{Bmatrix}n-i\\k-1\end{Bmatrix}\\ &=\sum_{i=1}^n i{n-1\choose i-1}\frac{1}{(k-1)!}\sum_{j=0}^{k-1}(-1)^j{k-1\choose j}(k-1-j)^{n-i}\\ &=\sum_{i=1}^n i{n-1\choose i-1}\sum_{j=0}^{k-1}\frac{(-1)^j}{j!}\frac{(k-j-1)^{n-i}}{(k-j-1)!}\\ &=\sum_{j=0}^{k-1}\frac{(-1)^j}{j!(k-j-1)!}\sum_{i=1}^n i {n-1\choose i-1}(k-j-1)^{n-i}\\ &=\sum_{j=0}^{k-1}\frac{(-1)^j}{j!(k-j-1)!}(\sum_{i=1}^n{n-1\choose i-1}(k-j-1)^{n-i}+\sum_{i=1}^n (i-1){n-1\choose i-1}(k-j-1)^{n-i})\\ &=\sum_{j=0}^{k-1}\frac{(-1)^j}{j!(k-j-1)!}(\sum_{i=1}^n{n-1\choose i-1}(k-j-1)^{n-i}+(n-1)\sum_{i=1}^n {n-2\choose i-2}(k-j-1)^{n-i})\\ &=\sum_{j=0}^{k-1}\frac{(-1)^j}{j!(k-j-1)!}((k-j)^{n-1}+(n-1)(k-j)^{n-2})\\ &=\sum_{j=0}^{k-1}\frac{(-1)^j}{j!(k-j-1)!}(k-j)^{n-2}(k-j+n-1)\\ \end{aligned} \]

这种推式子的方法比较不要脑子,还有一种要脑子的方法:

考虑什么对一个点的贡献,那么他自己对自己的贡献就为\(\begin{Bmatrix}n\\k\end{Bmatrix}\)

别人对他的贡献就是别人先分好然后他往别人分好的集合丢的贡献,也就是\((n-1)\begin{Bmatrix}n-1\\k\end{Bmatrix}\)

所以又有\(X=\begin{Bmatrix}n\\k\end{Bmatrix}+(n-1)\begin{Bmatrix}n-1\\k\end{Bmatrix}\)

代码

代码是第二种方法的。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring> 
#include <cmath> 
#include <algorithm>
using namespace std; 
inline int gi() {
    register int data = 0, w = 1;
    register char ch = 0; 
    while (!isdigit(ch) && ch != '-') ch = getchar(); 
    if (ch == '-') w = -1, ch = getchar(); 
    while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
    return w * data; 
} 
const int MAX_N = 2e5 + 5, Mod = 1e9 + 7;
int fpow(int x, int y) { 
	int res = 1; 
	while (y) {
		if (y & 1) res = 1ll * res * x % Mod; 
		x = 1ll * x * x % Mod; 
		y >>= 1; 
	} 
	return res; 
} 
int fac[MAX_N], ifc[MAX_N];
int C(int n, int m) { 
	if (n < m) return 0;
	else return 1ll * fac[n] * ifc[n - m] % Mod * ifc[m] % Mod; 
} 
int N, K, w[MAX_N]; 
int S(int n, int m) { 
	int res = 0, p = 1; 
	for (int i = 0; i <= m; i++) { 
		res = (res + 1ll * p * C(m, i) % Mod * fpow(m - i, n)) % Mod; 
		p = Mod - p; 
	}
	res = 1ll * res * ifc[m] % Mod; 
	return res; 
} 
int main () { 
#ifndef ONLINE_JUDGE 
    freopen("cpp.in", "r", stdin); 
#endif 
	N = gi(), K = gi();
	for (int i = 1; i <= N; i++) w[i] = gi(); 
	fac[0] = 1; for (int i = 1; i <= N; i++) fac[i] = 1ll * i * fac[i - 1] % Mod; 
	ifc[N] = fpow(fac[N], Mod - 2); 
	for (int i = N - 1; ~i; i--) ifc[i] = 1ll * ifc[i + 1] * (i + 1) % Mod; 
	int ans = 0; 
	for (int i = 1; i <= N; i++) ans = (ans + w[i]) % Mod; 
	printf("%lld\n", 1ll * ans * (S(N, K) + 1ll * S(N - 1, K) * (N - 1) % Mod) % Mod); 
    return 0; 
} 
posted @ 2020-01-16 00:08  heyujun  阅读(310)  评论(3编辑  收藏  举报