【AGC009C】Division into Two
【AGC009C】Division into Two
题面
题解
首先有一个比较显然的\(n^2\)算法:
设\(f_{i,j}\)表示\(A\)序列当前在第\(i\)个,\(B\)序列当前在第\(j\)个的方案数,发现\(i,j\)大小没有限制不是很好转移,于是再设一个\(g_{i,j}\)表示\(B\)序列当前在第\(i\)个,\(A\)序列当前在第\(j\)个的方案数的,这样子我们就可以钦定\(i>j\)了,转移会方便许多。
转移如下:
\[\left\{
\begin{aligned}
f_{i+1,j}\leftarrow f_{i,j}(a_{i+1}-a_i\geq A)\\
g_{i+1,i}\leftarrow f_{i,j}(a_{i+1}-a_j\geq B)\\
g_{i+1,j}\leftarrow g_{i,j}(a_{i+1}-a_i\geq B)\\
f_{i+1,i}\leftarrow g_{i,j}(a_{i+1}-a_j\geq A)
\end{aligned}
\right.
\]
然后让我们想一想怎么优化这个东西。
不妨设\(A<B\),则对于\(\forall i\geq 3,a_i-a_{i-2}\geq A\),对于不符合的我们直接判掉。
设\(f_i\)表示当前\(B\)序列在\(i\)的方案数,我们对于可以转移过来的\(j\),必须要满足\(a_i-a_j\geq B\),而对于\(\forall k\in [j+1,i-1]\),则要满足\(a_k-a_{k-1}\geq A\),考虑到这样的\(j\)是一个区间,而区间左右端点单调,我们把这个区间搞出来然后前缀和优化即可。
复杂度\(O(n)\)。
代码
\\O(n^2)
int main () {
scanf("%d %lld %lld", &N, &A, &B);
if (A > B) swap(A, B);
for (int i = 1; i <= N; i++) scanf("%lld", a + i);
for (int i = 3; i <= N; i++) if (a[i] - a[i - 2] < A) return puts("0") & 0;
a[0] = -1e18;
int ans = 0;
f[1][0] = 1, g[1][0] = 1;
for (int i = 1; i <= N; i++)
for (int j = 0; j < i; j++) {
if (a[i + 1] - a[i] >= A) f[i + 1][j] = (f[i + 1][j] + f[i][j]) % Mod;
if (a[i + 1] - a[j] >= B) g[i + 1][i] = (g[i + 1][i] + f[i][j]) % Mod;
if (a[i + 1] - a[i] >= B) g[i + 1][j] = (g[i + 1][j] + g[i][j]) % Mod;
if (a[i + 1] - a[j] >= A) f[i + 1][i] = (f[i + 1][i] + g[i][j]) % Mod;
}
for (int i = 0; i < N; i++) ans = (ans + (f[N][i] + g[N][i]) % Mod) % Mod;
printf("%d\n", ans);
return 0;
}
\\O(n)
int main () {
scanf("%d %lld %lld", &N, &A, &B);
for (int i = 1; i <= N; i++) scanf("%lld", a + i);
if (A > B) swap(A, B);
for (int i = 3; i <= N; i++) if (a[i] - a[i - 2] < A) return puts("0") & 0;
f[0] = s[0] = 1;
int l = 0, r = 0;
for (int i = 1; i <= N; i++) {
while (r < i - 1 && a[i] - a[r + 1] >= B) ++r;
if (l <= r) f[i] = (s[r] - (l ? s[l - 1] : 0) + Mod) % Mod;
s[i] = (s[i - 1] + f[i]) % Mod;
if (i != 1 && a[i] - a[i - 1] < A) l = i - 1;
}
int ans = 0;
for (int i = N; ~i; i--) {
ans = (ans + f[i]) % Mod;
if (i != N && a[i + 1] - a[i] < A) break;
}
printf("%d\n", ans);
return 0;
}