【CF1042F】Leaf Sets
【CF1042F】Leaf Sets
题面
题解
对于一个根节点\(x\),考虑其子树内的所有\(lca\)为它的叶子节点到它的距离\(d_1<d2<...<d_m\)。
那么对于中间最小的\(d_i+d_{i+1}>K\),我们可以将\(i\)之前的所有叶子节点合并成一个大点,并以深度\(d_i\)向上合并,再将\(d_{i+1}...d_m\)向上合并即可。
这样子用数据结构维护复杂度是\(O(n\log n)\)的。
然而我们发现只有\(d_i\)继续向上合并才有用,那么只要保留这个\(d_i\)就行了,复杂度\(O(n)\)。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 1e6 + 5;
struct Graph { int to, next; } e[MAX_N << 1];
int fir[MAX_N], e_cnt;
void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; }
void Add_Edge(int u, int v) { e[e_cnt] = (Graph){v, fir[u]}, fir[u] = e_cnt++; }
int N, K, deg[MAX_N], ans;
int dfs(int x, int fa) {
if (deg[x] == 1) return 1;
int res = 0;
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == fa) continue;
int tmp = dfs(v, x);
if (tmp + res > K) ans++, res = min(res, tmp);
else res = max(res, tmp);
}
return res ? res + 1 : 0;
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
clearGraph();
N = gi(), K = gi();
for (int i = 1; i < N; i++) {
int u = gi(), v = gi();
Add_Edge(u, v), Add_Edge(v, u);
deg[u]++, deg[v]++;
}
for (int i = 1; i <= N; i++)
if (deg[i] != 1) return printf("%d\n", (bool)(dfs(i, 0)) + ans) & 0;
return 0;
}