【SP1812】LCS2 - Longest Common Substring II
【SP1812】LCS2 - Longest Common Substring II
题面
题解
你首先得会做这题。
然后就其实就很简单了,
你在每一个状态\(i\)打一个标记\(f[i]\)表示状态\(i\)能匹配到最长的子串长度,
显然\(f[i]\)可以上传给\(f[i.fa]\)。
然后去每个串和第\(1\)个串\(f\)的最小值的最大值即可。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAX_N = 1e5 + 5;
struct Node { int ch[26], fa, len; } t[MAX_N << 1];
int tot = 1, lst = 1;
void extend(int c) {
++tot, t[lst].ch[c] = tot;
t[tot].len = t[lst].len + 1;
int p = t[lst].fa; lst = tot;
while (p && !t[p].ch[c]) t[p].ch[c] = tot, p = t[p].fa;
if (!p) return (void)(t[tot].fa = 1);
int q = t[p].ch[c];
if (t[q].len == t[p].len + 1) return (void)(t[tot].fa = q);
int _q = ++tot; t[_q] = t[q];
t[_q].len = t[p].len + 1, t[q].fa = t[tot - 1].fa = _q;
while (p && t[p].ch[c] == q) t[p].ch[c] = _q, p = t[p].fa;
}
char a[MAX_N];
int N, A[MAX_N << 1], f[MAX_N << 1], g[MAX_N << 1], bln[MAX_N << 1];
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
scanf("%s", a + 1);
N = strlen(a + 1);
for (int i = 1; i <= N; i++) extend(a[i] - 'a');
for (int i = 1; i <= tot; i++) ++bln[t[i].len];
for (int i = 1; i <= tot; i++) bln[i] += bln[i - 1];
for (int i = 1; i <= tot; i++) A[bln[t[i].len]--] = i;
for (int i = 1; i <= tot; i++) g[i] = t[i].len;
while (scanf("%s", a + 1) != EOF) {
N = strlen(a + 1);
for (int i = 1; i <= tot; i++) f[i] = 0;
for (int v = 1, l = 0, i = 1; i <= N; i++) {
while (v && !t[v].ch[a[i] - 'a']) v = t[v].fa, l = t[v].len;
if (!v) v = 1, l = 0;
if (t[v].ch[a[i] - 'a']) ++l, v = t[v].ch[a[i] - 'a'];
f[v] = max(f[v], l);
}
for (int i = tot; i; i--) f[t[i].fa] = max(f[t[i].fa], f[i]);
for (int i = 1; i <= tot; i++) g[i] = min(g[i], f[i]);
}
printf("%d\n", *max_element(&g[1], &g[tot + 1]));
return 0;
}