【BZOJ1003】[ZJOI2006]物流运输
【BZOJ1003】[ZJOI2006]物流运输
题面
题解
设\(f_i\)表示前\(i\)天花费的最小值。
我们设第\(l,r\)天\(1\)到\(m\)的距离为\(dis_{l,r}\),这个可以\(n^2\)遍最短路求出。
那么转移就很显然了:
\[f_i=\min_{j=0}^{i-1} f_j+dis_{j+1,i}\times (i-j)+K
\]
注意初值\(f_0=-K\),因为第一次更改不算贡献。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
const int MAX_N = 1e3 + 5;
struct Graph { int to, cost, next; } e[MAX_N << 1];
int fir[MAX_N], e_cnt;
void Add_Edge(int u, int v, int w) {
e[e_cnt] = (Graph){v, w, fir[u]};
fir[u] = e_cnt++;
}
const int INF = 1e9;
int N, M, K, E, D;
bool run[MAX_N][MAX_N], ok[MAX_N], inq[MAX_N];
int dis[MAX_N][MAX_N], ds[MAX_N];
void spfa(int l, int r) {
for (int i = 1; i <= M; i++) {
ok[i] = 1;
for (int j = l; j <= r && ok[i]; j++) if (run[i][j]) ok[i] = 0;
}
queue<int> que;
for (int i = 1; i <= M; i++) ds[i] = INF, inq[i] = 0;
ds[1] = 0, inq[1] = 1, que.push(1);
while (!que.empty()) {
int x = que.front(); que.pop();
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; if (!ok[v]) continue;
if (ds[x] + e[i].cost < ds[v]) {
ds[v] = ds[x] + e[i].cost;
if (!inq[v]) que.push(v), inq[v] = 1;
}
}
inq[x] = 0;
}
dis[l][r] = ds[M];
}
long long f[MAX_N];
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
memset(fir, -1, sizeof(fir));
scanf("%d%d%d%d", &N, &M, &K, &E);
for (int i = 1; i <= E; i++) {
int u, v, w; scanf("%d%d%d", &u, &v, &w);
Add_Edge(u, v, w), Add_Edge(v, u, w);
}
scanf("%d", &D);
for (int i = 1; i <= D; i++) {
int p, l, r; scanf("%d%d%d", &p, &l, &r);
for (int j = l; j <= r; j++) run[p][j] = 1;
}
for (int i = 1; i <= N; i++)
for (int j = i; j <= N; j++)
spfa(i, j);
f[0] = -K;
for (int i = 1; i <= N; i++) {
f[i] = 1e18;
for (int j = 0; j < i; j++)
f[i] = min(f[i], f[j] + 1ll * dis[j + 1][i] * (i - j) + K);
}
printf("%lld\n", f[N]);
return 0;
}