【LG3249】[HNOI2016]矿区
【LG3249】[HNOI2016]矿区
题面
题解
先平面图转对偶图,
建好了对偶图之后随意拿出一个生成树,以无边界的范围为根。
无边界的范围很好求,用叉积算出有向面积时,算出来是负数的就是无边界的范围。
然后标记所有的树边,记录生成树中每个子树的矿区面积和及面积平方和。
对于每一个询问,先找到询问里出现的边,如果有非树边就忽略,否则如果这条边所在的面是儿子,就加上子树的面积,如果是父亲就减去儿子子树的面积。
这个可以通过画图手玩进行证明。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 2e5 + 5, MAX_M = 1.2e6 + 5;
const double EPS = 1e-10;
struct Point { int x, y; } p[MAX_N];
Point operator - (const Point &l, const Point &r) { return (Point){l.x - r.x, l.y - r.y}; }
long long cross(const Point &l, const Point &r) { return 1ll * l.x * r.y - 1ll * l.y * r.x; }
struct Edge { int id, x, y; double a; } e[MAX_M]; int e_cnt = 0;
bool operator < (const Edge &l, const Edge &r)
{ return fabs(l.a - r.a) < EPS ? l.y < r.y : l.a < r.a; }
vector<Edge> G[MAX_N], T[MAX_M];
void Add_Edge(int u, int v) {
e[e_cnt] = (Edge){e_cnt, u, v, atan2(p[v].y - p[u].y, p[v].x - p[u].x)};
G[u].push_back(e[e_cnt]); e_cnt++;
}
int N, M, Q;
int cnt, root, nxt[MAX_M], pos[MAX_M], fa[MAX_M];
long long ans1, ans2, s1[MAX_M], s2[MAX_M];
void build() {
for (int i = 1; i <= N; i++) sort(G[i].begin(), G[i].end());
for (int i = 0; i < e_cnt; i++) {
int y = e[i].y;
vector<Edge> :: iterator ite = lower_bound(G[y].begin(), G[y].end(), e[i ^ 1]);
if (ite == G[y].begin()) ite = G[y].end();
--ite, nxt[i] = ite -> id;
}
for (int i = 0; i < e_cnt; i++) {
if (pos[i]) continue;
pos[i] = pos[nxt[i]] = ++cnt;
for (int j = nxt[i]; e[j].y != e[i].x; j = nxt[j], pos[j] = cnt)
s1[cnt] += cross(p[e[j].x] - p[e[i].x], p[e[j].y] - p[e[i].x]);
if (s1[cnt] <= 0) root = cnt;
}
for (int i = 0; i < e_cnt; i++)
T[pos[i]].push_back((Edge){i, pos[i], pos[i ^ 1]});
}
bool vis[MAX_M], ist[MAX_M];
void dfs(int x) {
s2[x] = 1ll * s1[x] * s1[x], s1[x] <<= 1ll, vis[x] = 1;
for (int i = 0, sz = T[x].size(); i < sz; i++) {
int y = T[x][i].y; if (vis[y]) continue;
ist[T[x][i].id] = ist[T[x][i].id ^ 1] = 1;
fa[y] = x; dfs(y); s1[x] += s1[y], s2[x] += s2[y];
}
}
long long gcd(long long x, long long y) {
if (y == 0) return x;
else return gcd(y, x % y);
}
int q[MAX_M];
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
N = gi(), M = gi(), Q = gi();
for (int i = 1; i <= N; i++) p[i] = (Point){gi(), gi()};
for (int i = 1; i <= M; i++) {
int u = gi(), v = gi();
Add_Edge(u, v), Add_Edge(v, u);
}
build(); dfs(root);
while (Q--) {
int n = (gi() + ans1) % N + 1;
for (int i = 1; i <= n; i++) q[i] = (gi() + ans1) % N + 1;
q[n + 1] = q[1], ans1 = ans2 = 0;
for (int i = 1; i <= n; i++) {
int x = q[i], y = q[i + 1];
Edge e = (Edge){0, x, y, atan2(p[y].y - p[x].y, p[y].x - p[x].x)};
vector<Edge> :: iterator ite = lower_bound(G[x].begin(), G[x].end(), e);
int j = ite -> id; if (!ist[j]) continue;
if (fa[pos[j]] == pos[j ^ 1]) ans1 += s2[pos[j]], ans2 += s1[pos[j]];
else ans1 -= s2[pos[j ^ 1]], ans2 -= s1[pos[j ^ 1]];
}
long long tmp = gcd(ans1, ans2);
ans1 /= tmp, ans2 /= tmp;
printf("%lld %lld\n", ans1, ans2);
}
return 0;
}