【LG3238】 [HNOI2014]道路堵塞

题目描述

给你一张\(N\)个点、\(M\)条边的有向图,按顺序给定你一条有\(L\)条边的\(1\rightarrow n\)的最短路,
每次断掉这\(L\)条边中的一条(不对后面答案产生影响),求每次断边之后的最短路。

题解

40pts

每次断边之后跑\(dijkstra\)最短路即可,复杂度\(O(LM\log N)\)

100pts

法一:

好像是一种奇怪的堆+\(spfa\)算法,但是在现在这种卡\(spfa\)的大环境下,这种方法已经不对了。

法二:

分别建正图和反图跑dijkstra,记一个点\(i\)在起点为\(1\)的正图上最短距离为\(dis_i\)
在起点为\(N\)的反图上最短距离为\(dis'_i\),可以

枚举每一条不是那\(L\)条边中的边\(e_{a\rightarrow b}\),可以知道过这一条边的最短路长度为\(dis_a+dis'_b\)+\(e_{a\rightarrow b}\)的长度。

设给定的\(L\)条边分别为\(e_1,e_2...e_L\)

则经过这一条边的最短路序列为:

\(e_1\rightarrow ...\;\rightarrow e_i\rightarrow\)一些奇怪的边\(\rightarrow e_{a\rightarrow b}\rightarrow\)一些奇怪的边\(\rightarrow e_j\rightarrow ...\;\rightarrow e_L\)

其中\(1\leq i<j\leq L\)

那么对于\(i+1\)\(j-1\)的所有边,我们断掉他们时,可以通过一条长度为\(\;\;dis_a+dis'_b\)+\(e_{a\rightarrow b}\)的长度\(\;\;\)的路径到达。

则在线段树上在区间\([i+1,j-1]\)打一个路径长度的标记,对于每一个\(e_i\),单点查询即可。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring> 
#include <cmath> 
#include <algorithm> 
#include <vector>
#include <queue> 
using namespace std; 
inline int gi() {
    register int data = 0, w = 1;
    register char ch = 0;
    while (!isdigit(ch) && ch != '-') ch = getchar(); 
    if (ch == '-') w = -1, ch = getchar();
    while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
    return w * data; 
} 
const int INF = 1e9; 
const int MAX_N = 1e5 + 5, MAX_M = 2e5 + 5;
struct Edge { int u, v, w; } e[MAX_M]; 
struct Graph { int to, cost, num; } ;
vector<Graph> G[2][MAX_N]; 
int N, M, L, sp[MAX_N], dis[2][MAX_N], prv[2][MAX_N], used[MAX_M]; 
int chk(int x, int y, bool op) { return op ? max(x, y) : min(x, y); } 
void dijkstra(int s, int op, int t) { 
	static priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > que; 
	for (int i = 1; i <= N; i++) dis[op][i] = INF; 
	que.push(make_pair(dis[op][s] = 0, s)); 
	while (!que.empty()) { 
        pair<int, int> p = que.top(); que.pop(); 
		int x = p.second; 
		if (p.first < dis[op][x]) continue;
		if (x == t) continue;
		for (int i = 0, sz = G[op][x].size(); i < sz; i++) { 
			Graph &e = G[op][x][i]; int v = e.to; 
			if (dis[op][x] + e.cost < dis[op][v]) { 
				prv[op][v] = (op ? 0 : INF); 
				dis[op][v] = dis[op][x] + e.cost; 
				if (!used[e.num]) prv[op][v] = chk(prv[op][v], prv[op][x], op); 
				else prv[op][v] = chk(prv[op][v], used[e.num], op);
				que.push(make_pair(dis[op][v], v)); 
			} else if (dis[op][x] + e.cost == dis[op][v]) { 
				if (!used[e.num]) prv[op][v] = chk(prv[op][v], prv[op][x], op); 
				else prv[op][v] = chk(prv[op][v], used[e.num], op); 
			} 
		} 
	} 
} 
#define lson (o << 1) 
#define rson (o << 1 | 1) 
int val[MAX_M << 2], tag[MAX_M << 2]; 
void puttag(int o, int v) { val[o] = min(val[o], v); tag[o] = min(tag[o], v); } 
void pushdown(int o, int l, int r) {
	if (l == r || tag[o] == INF) return ; 
	puttag(lson, tag[o]); puttag(rson, tag[o]);
	tag[o] = INF; 
} 
void pushup(int o) { val[o] = min(val[lson], val[rson]); } 
void modify(int o, int l, int r, int ql, int qr, int v) { 
	if (ql <= l && r <= qr) return (void)(puttag(o, v)); 
	pushdown(o, l, r); 
	int mid = (l + r) >> 1;
	if (ql <= mid) modify(lson, l, mid, ql, qr, v); 
	if (qr > mid) modify(rson, mid + 1, r, ql, qr, v); 
	pushup(o); 
} 
int query(int o, int l, int r, int pos) {
	pushdown(o, l, r); 
	if (l == r) return val[o]; 
	int mid = (l + r) >> 1;
	if (pos <= mid) return query(lson, l, mid, pos);
	else return query(rson, mid + 1, r, pos); 
} 
int main () { 
#ifndef ONLINE_JUDGE 
    freopen("cpp.in", "r", stdin); 
#endif 
	N = gi(), M = gi(), L = gi(); 
	for (int i = 1; i <= M; i++) { 
		int u = gi(), v = gi(), w = gi(); 
		G[0][u].push_back((Graph){v, w, i}); 
		G[1][v].push_back((Graph){u, w, i});
		e[i] = (Edge){u, v, w}; 
	} 
	for (int i = 1; i <= L; i++) used[sp[i] = gi()] = i; 
	for (int i = 1; i <= N; i++) prv[0][i] = L + 1, prv[1][i] = 0;
	prv[0][1] = 0, prv[1][N] = L + 1; 
	dijkstra(1, 0, N); 
	dijkstra(N, 1, 1); 
	for (int i = 1; i <= (L << 2); i++) val[i] = tag[i] = INF; 
	for (int i = 1; i <= M; i++) { 
		if (used[i] || dis[0][e[i].u] == INF || dis[1][e[i].v] == INF) continue; 
		int l = prv[0][e[i].u] + 1; 
		int r = prv[1][e[i].v] - 1; 
		if (l > r) continue; 
		else modify(1, 0, L + 1, l, r, dis[0][e[i].u] + dis[1][e[i].v] + e[i].w); 
	} 
	for (int i = 1; i <= L; i++) { 
		int ans = query(1, 0, L + 1, i); 
		printf("%d\n", (ans == INF) ? -1 : ans); 
	} 
    return 0; 
} 
posted @ 2019-02-25 16:18  heyujun  阅读(313)  评论(0编辑  收藏  举报