【LG4103】[HEOI2014]大工程

【LG4103】[HEOI2014]大工程

题面

洛谷

题解

先建虚树,下面所有讨论均是在虚树上的。

对于第一问:直接统计所有树边对答案的贡献即可。

对于第\(2,3\)问:记\(f[x]\)表示在\(x\)的子树内离\(x\)距离最远的关键点的距离,\(g[x]\)表示在\(x\)的子树内离\(x\)距离最近的关键点的距离。

具体更新以\(f[x]\)为例:

访问到\(v\in son_x\)

如果以前访问过的点中有关键点,则有\(f[x]=max(f[x],f[v]+dis(u,v)+f[x])\)

每次还要向上传递,即\(f[x]=max(f[x],f[v]+dis(u,v))\)

代码

#include <iostream> 
#include <cstdio> 
#include <cstdlib> 
#include <cstring> 
#include <cmath> 
#include <algorithm> 
using namespace std; 
inline int gi() { 
    register int data = 0, w = 1; 
    register char ch = 0; 
    while (!isdigit(ch) && ch != '-') ch = getchar(); 
    if (ch == '-') w = -1, ch = getchar(); 
    while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
    return w * data; 
} 
const int MAX_N = 1e6 + 5; 
struct Graph { int to, next; } e[MAX_N << 2];
int fir1[MAX_N], fir2[MAX_N], e_cnt;
void clearGraph() {
	memset(fir1, -1, sizeof(fir1)); 
	memset(fir2, -1, sizeof(fir2)); 
} 
void Add_Edge(int *fir, int u, int v) { 
	e[e_cnt] = (Graph){v, fir[u]}; 
	fir[u] = e_cnt++; 
}
namespace Tree { 
	int fa[MAX_N], dep[MAX_N], size[MAX_N], top[MAX_N], son[MAX_N], dfn[MAX_N], tim; 
	void dfs1(int x) {
		dfn[x] = ++tim; 
	    size[x] = 1, dep[x] = dep[fa[x]] + 1; 
		for (int i = fir1[x]; ~i; i = e[i].next) {
			int v = e[i].to; if (v == fa[x]) continue; 
			fa[v] = x; dfs1(v); size[x] += size[v]; 
			if (size[v] > size[son[x]]) son[x] = v; 
		} 
	} 
	void dfs2(int x, int tp) {
		top[x] = tp; 
	    if (son[x]) dfs2(son[x], tp); 
		for (int i = fir1[x]; ~i; i = e[i].next) {
			int v = e[i].to; if (v == fa[x] || v == son[x]) continue; 
			dfs2(v, v); 
		} 
	} 
	int LCA(int x, int y) { 
		while (top[x] != top[y]) { 
			if (dep[top[x]] < dep[top[y]]) swap(x, y); 
			x = fa[top[x]]; 
		} 
		return dep[x] < dep[y] ? x : y; 
	} 
} 
using Tree::LCA; using Tree::dfn; using Tree::dep; 
int N, M, K, a[MAX_N];
bool key[MAX_N];
int f[MAX_N], g[MAX_N], s[MAX_N]; 
bool cmp(int i, int j) { return dfn[i] < dfn[j]; } 
void build() { 
	static int stk[MAX_N], top; 
	sort(&a[1], &a[K + 1], cmp); 
	stk[top = 1] = 1; fir2[1] = -1;
	e_cnt = 0; 
	for (int i = 1; i <= K; i++) {
		key[a[i]] = 1; 
		if (a[i] == 1) continue; 
		int lca = LCA(stk[top], a[i]); 
		if (lca != stk[top]) { 
			while (dfn[lca] < dfn[stk[top - 1]]) { 
				int u = stk[top], v = stk[top - 1]; 
				Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
				--top; 
			} 
			if (dfn[lca] > dfn[stk[top - 1]]) { 
				fir2[lca] = -1; int u = stk[top], v = lca; 
				Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
				stk[top] = lca; 
			}
			else { 
				int u = lca, v = stk[top--]; 
				Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
			} 
		}
		fir2[a[i]] = -1, stk[++top] = a[i]; 
	} 
	for (int i = 1; i < top; i++) {
		int u = stk[i], v = stk[i + 1]; 
		Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
	} 
} 
long long ans1;
int ans2, ans3; 
void Dp(int x, int fa) { 
	s[x] = key[x], f[x] = 0, g[x] = (key[x] ? 0 : 1e9); 
	for (int i = fir2[x]; ~i; i = e[i].next) { 
		int v = e[i].to; if (v == fa) continue; 
		Dp(v, x); 
	} 
	for (int i = fir2[x]; ~i; i = e[i].next) { 
		int v = e[i].to, w = dep[v] - dep[x]; 
		if (v == fa) continue; 
		ans1 += 1ll * (K - s[v]) * s[v] * w; 
		if (s[x] > 0) { 
			ans2 = min(ans2, g[x] + w + g[v]); 
			ans3 = max(ans3, f[x] + w + f[v]); 
		} 
		g[x] = min(g[x], g[v] + w); 
	    f[x] = max(f[x], f[v] + w);
		s[x] += s[v]; 
	} 
	key[x] = 0; 
} 
int main () {
#ifndef ONLINE_JUDGE 
    freopen("cpp.in", "r", stdin); 
#endif
	clearGraph(); 
	N = gi(); 
	for (int i = 1; i < N; i++) { 
		int u = gi(), v = gi(); 
		Add_Edge(fir1, u, v), Add_Edge(fir1, v, u); 
	}
	Tree::dfs1(1), Tree::dfs2(1, 1); 
	M = gi(); 
	while (M--) { 
		ans1 = 0, ans2 = 1e9, ans3 = 0; 
		K = gi(); for (int i = 1; i <= K; i++) a[i] = gi(); 
		build(); 
		Dp(1, 0); 
		printf("%lld %d %d\n", ans1, ans2, ans3); 
	} 
	return 0; 
} 
posted @ 2019-02-10 20:55  heyujun  阅读(406)  评论(0编辑  收藏  举报