【BZOJ4016】[FJOI2014]最短路径树问题
【BZOJ4016】[FJOI2014]最短路径树问题
题面
题解
虽然调了蛮久,但是思路还是蛮简单的2333
把最短路径树构出来,然后点分治就好啦
ps:如果树构萎了,这组数据可以卡掉
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 3e4 + 5;
const int MAX_M = 6e4 + 5;
const int INF = 1e9;
int N, M, K;
struct Graph { int to, next, cost; } e[MAX_M << 2];
int fir1[MAX_N], fir2[MAX_N], e_cnt;
void clearGraph() {
memset(fir1, -1, sizeof(fir1));
memset(fir2, -1, sizeof(fir2));
e_cnt = 0;
}
void Add_Edge(int *fir, int u, int v, int w) { e[e_cnt] = (Graph){v, fir[u], w}; fir[u] = e_cnt++; }
vector<int> vec[MAX_N];
bool vis[MAX_N];
bool cmp(int i, int j) { return e[i].to < e[j].to; }
void dijkstra() {
static priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > que;
static int dis[MAX_N];
fill(&dis[1], &dis[N + 1], INF);
dis[1] = 0, que.push(make_pair(0, 1));
while (!que.empty()) {
pair<int, int> p = que.top(); que.pop();
int x = p.second;
if (p.first > dis[x]) continue;
for (int i = fir1[x]; ~i; i = e[i].next) {
int v = e[i].to;
if (dis[v] + e[i].cost == dis[x]) vec[v].push_back(i ^ 1);
}
for (int i = fir1[x]; ~i; i = e[i].next) {
int v = e[i].to;
if (dis[x] + e[i].cost < dis[v]) {
dis[v] = dis[x] + e[i].cost;
que.push(make_pair(dis[v], v));
}
}
}
}
void dfs(int x) {
vis[x] = 1;
sort(vec[x].begin(), vec[x].end(), cmp);
for (int i = 0, sz = vec[x].size(); i < sz; i++) {
int j = vec[x][i]; if (vis[e[j].to]) continue;
Add_Edge(fir2, x, e[j].to, e[j].cost), Add_Edge(fir2, e[j].to, x, e[j].cost);
dfs(e[j].to);
}
}
bool used[MAX_N];
int size[MAX_N], dep[MAX_N], dis[MAX_N], centroid, sz, rmx, mx;
int stk[MAX_N], top = 0;
int ans1 = 0, ans2 = 0;
void search_centroid(int x, int fa) {
size[x] = 1;
int mx = 0;
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to;
if (v == fa || used[v]) continue;
search_centroid(v, x);
size[x] += size[v];
mx = max(mx, size[v]);
}
mx = max(mx, sz - size[x]);
if (mx < rmx) centroid = x, rmx = mx;
}
namespace cpp1 {
int bln[MAX_N];
void getans(int x, int fa) {
if (dep[x] < K - 1) ans1 = max(ans1, bln[K - 1 - dep[x]] + dis[x]);
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (used[v] || v == fa) continue;
dep[v] = dep[x] + 1;
dis[v] = dis[x] + e[i].cost;
getans(v, x);
}
}
void getdis(int x, int fa) {
stk[++top] = x; bln[dep[x]] = max(bln[dep[x]], dis[x]);
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (used[v] || v == fa) continue;
getdis(v, x);
}
}
void Div(int x) {
used[x] = 1; top = 0;
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (used[v]) continue;
dep[v] = 1, dis[v] = e[i].cost;
getans(v, 0), getdis(v, 0);
}
ans1 = max(ans1, bln[K - 1]);
for (int i = 1; i <= top; i++) bln[dep[stk[i]]] = 0;
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (used[v]) continue;
rmx = sz = size[v], centroid = 0;
search_centroid(v, 0);
Div(centroid);
}
}
}
namespace cpp2 {
map<pair<int, int>, int> mp;
void getans(int x, int fa) {
if (dep[x] < K - 1) ans2 += mp[make_pair(ans1 - dis[x], K - 1 - dep[x])];
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (used[v] || v == fa) continue;
dep[v] = dep[x] + 1;
dis[v] = dis[x] + e[i].cost;
getans(v, x);
}
}
void getdis(int x, int fa) {
mp[make_pair(dis[x], dep[x])]++;
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (used[v] || v == fa) continue;
getdis(v, x);
}
}
void Div(int x) {
used[x] = 1;
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (used[v]) continue;
dep[v] = 1, dis[v] = e[i].cost;
getans(v, 0), getdis(v, 0);
}
ans2 += mp[make_pair(ans1, K - 1)];
mp.clear();
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (used[v]) continue;
rmx = sz = size[v], centroid = 0;
search_centroid(v, 0);
Div(centroid);
}
}
}
int main () {
N = gi(), M = gi(), K = gi();
clearGraph();
for (int i = 1; i <= M; i++) {
int u = gi(), v = gi(), w = gi();
Add_Edge(fir1, u, v, w), Add_Edge(fir1, v, u, w);
}
dijkstra();
dfs(1);
sz = rmx = N;
search_centroid(1, 0);
cpp1::Div(centroid);
memset(used, 0, sizeof(used));
sz = rmx = N, centroid = 0;
search_centroid(1, 0);
cpp2::Div(centroid);
printf("%d %d\n", ans1, ans2);
return 0;
}