【LG4317】花神的数论题
【LG4317】花神的数论题
题面
题解
设\(f_{i,up,tmp,d}\)表示当前在第\(i\)位,是否卡上界,有\(tmp\)个一,目标是几个一的方案数
最后将所有\(d\)固定,套数位\(dp\)的板子
然后快速幂乘起来就好了
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
#define int long long
const int Mod = 1e7 + 7;
int N, f[55][2][55][55];
vector<int> digit;
int fpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % Mod;
x = 1ll * x * x % Mod;
y >>= 1ll;
}
return res;
}
int dfs(int o, bool up, int tmp, int d) {
if (o == -1) return tmp == d;
if (~f[o][up][tmp][d]) return f[o][up][tmp][d];
int lim = up ? digit[o] : 1, res = 0;
for (int i = 0; i <= lim; i++) res = res + dfs(o - 1, up && i == lim, tmp + (i == 1), d);
return f[o][up][tmp][d] = res;
}
int ans[100];
int solve(int n) {
while (n) digit.push_back(n & 1ll), n >>= 1ll;
digit.push_back(0);
for (int i = 1; i <= 50; i++) {
memset(f, -1, sizeof(f));
ans[i] = dfs(digit.size() - 1, 1, 0, i);
}
int res = 1;
for (int i = 1; i <= 50; i++) res = 1ll * res * fpow(i, ans[i]) % Mod;
return res;
}
signed main () {
cin >> N;
printf("%lld\n", solve(N));
return 0;
}