【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)
题意:
给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\)。
思路:
我们对于每个结点将其答案展开:
\[\begin{aligned}
ans_x=&\sum_{i=0}^{n}\sum_{j=0}^k{dis(x,i)\choose j}j!\begin{Bmatrix}
k \\ j
\end{Bmatrix}\\
=&\sum_{j=0}^kj!\begin{Bmatrix}
k \\ j
\end{Bmatrix}\sum_{i=0}^n{dis(x,i)\choose j}
\end{aligned}
\]
现在就考虑如何快速求\(\displaystyle \sum_{i=0}^n{dis(x,i)\choose j}\)。
因为组合数可以展开,所以我们可以写成:
\[\sum_{i=0}^n{dis(x,i)-1\choose j-1}+{dis(x,i)-1\choose j}
\]
如果\(x\)为根节点的话,那么答案很好求,我们只需要对每个点求出其子树的答案。我们记\(f[i][j]\)为以\(i\)为根的子树中,\(\displaystyle \sum_{k=0}^n{dis(k,i)\choose j}\)的答案。那么每个结点更新答案时由其儿子结点转移过来即可。
最后再换下根即可求出以所有结点为根结点的答案,当\(u\)向\(v\)转移时,要减去\(v\)结点的贡献才能得出以\(u\)为根节点的子树的值。
细节见代码:
/*
* Author: heyuhhh
* Created Time: 2019/12/14 14:56:05
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 5e4 + 5, M = 155, MOD = 10007;
int n, k;
int f[N][M], g[N][M];
vector <int> G[N];
int s[M][M], fac[M], inv[M];
ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
void init() {
s[0][0] = 1;
for(int i = 1; i < M; i++)
for(int j = 1; j <= i; j++)
s[i][j] = (s[i - 1][j] * j + s[i - 1][j - 1]) % MOD;
fac[0] = 1;
for(int i = 1; i < M; i++) fac[i] = 1ll * fac[i - 1] * i % MOD;
inv[M - 1] = qpow(fac[M - 1], MOD - 2);
for(int i = M - 2; i >= 0; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % MOD;
}
void dfs(int u, int fa) {
f[u][0] = 1;
for(int j = 0; j < sz(G[u]); j++) {
int v = G[u][j];
if(v != fa) {
dfs(v, u);
for(int i = 0; i <= k; i++) {
f[u][i] = (f[u][i] + f[v][i]) % MOD;
if(i) f[u][i] = (f[u][i] + f[v][i - 1]) % MOD;
}
}
}
}
void dfs2(int u, int fa) {
for(int j = 0; j < sz(G[u]); j++) {
int v = G[u][j];
if(v != fa) {
for(int i = 0; i <= k; i++) {
g[v][i] = (g[v][i] + g[u][i] - f[v][i] + MOD) % MOD;
if(i) g[v][i] = (g[v][i] + g[u][i - 1] - f[v][i - 1] + MOD - f[v][i - 1] + MOD) % MOD;
if(i > 1) g[v][i] = (g[v][i] - f[v][i - 2] + MOD) % MOD;
}
dfs2(v, u);
}
}
}
void run(){
//cin >> n >> k;
//for(int i = 1; i < n; i++) {
//int u, v; cin >> u >> v;
//G[u].push_back(v);
//G[v].push_back(u);
//}
int L,now,A,B,Q;
cin >> n >> k >> L >> now >> A >> B >> Q;
for(int i = 1; i < n; i++) {
now = (now * A + B) % Q;
int tmp = i < L ? i : L;
int x = i - now % tmp, y = i + 1;
G[x].push_back(y);
G[y].push_back(x);
}
dfs(1, 0);
for(int i = 1; i <= n; i++)
for(int j = 0; j <= k; j++)
g[i][j] = f[i][j];
dfs2(1, 0);
for(int i = 1; i <= n; i++) {
int ans = 0;
for(int j = 0; j <= k; j++) {
ans = (ans + 1ll * fac[j] * s[k][j] * g[i][j]) % MOD;
}
printf("%d\n", ans);
}
}
int main() {
init(); run();
return 0;
}
重要的是自信,一旦有了自信,人就会赢得一切。