【bzoj4154】(dfs序+kd-tree)
题意:
给出一颗以\(1\)为根的有根树,初始所有结点的颜色为\(1\)。
之后有两个操作,一种是每次将距离\(a\)结点距离不超过\(l\)的所有儿子结点颜色染为\(c\);另一种是询问结点\(a\)的颜色。
现在就要回答第二个操作。
思路:
我们先求出树的\(dfs\)序,那么显然每个点可以用\((dfn[i],deep[i])\)这样在二维空间中的一个点来表示,那么问题就转换为了空间中的矩阵修改以及单点查询。
那么直接上\(kd-tree\)就好了,矩阵修改的时候减减枝,复杂度为\(O(q\sqrt{n})\)。
注意一下,这里查询的时候,一开始我是\(O(logn)\)复杂度的单点查询,但这样是有问题的,比如在同一维上有多个点时,这时\(kd-tree\)的处理有问题,不知道该往左儿子还是右儿子走(可以提前在排序规则那里多加一个判断)。简单起见,直接矩阵查询就行了,复杂度也变为了\(O(q\sqrt{n})\)。
代码如下:(调的好难受啊)
/*
* Author: heyuhhh
* Created Time: 2019/11/27 19:34:08
*/
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 1e5 + 5, MOD = 1e9 + 7;
int D;
struct Point {
int d[2];
Point(int x = 0, int y = 0) {
d[0] = x, d[1] = y;
}
int& operator[] (int x) {return d[x];}
}p[N];
struct Node{
int mn[2], mx[2];
int l, r, col;
bool lz;
Point t;
}tr[N];
bool operator < (const Point &A, const Point &B) {
return A.d[D] < B.d[D];
}
bool operator == (const Point &A, const Point &B) {
return A.d[0] == B.d[0] && A.d[1] == B.d[1];
}
int rt;
struct kdtree {
void push_up(int o) {
int ls = tr[o].l, rs = tr[o].r;
for(int i = 0; i < 2; i++) {
tr[o].mn[i] = tr[o].mx[i] = tr[o].t[i];
if(ls) {
tr[o].mn[i] = min(tr[o].mn[i], tr[ls].mn[i]);
tr[o].mx[i] = max(tr[o].mx[i], tr[ls].mx[i]);
}
if(rs) {
tr[o].mn[i] = min(tr[o].mn[i], tr[rs].mn[i]);
tr[o].mx[i] = max(tr[o].mx[i], tr[rs].mx[i]);
}
}
}
void push_down(int o) {
if(tr[o].lz) {
if(tr[o].l) {
tr[tr[o].l].lz = true;
tr[tr[o].l].col = tr[o].col;
}
if(tr[o].r) {
tr[tr[o].r].lz = true;
tr[tr[o].r].col = tr[o].col;
}
tr[o].lz = false;
}
}
int build(int l, int r, int now) {
D = now;
int mid = (l + r) >> 1;
nth_element(p + l, p + mid, p + r + 1);
tr[mid].t = p[mid];
tr[mid].lz = false;
tr[mid].col = 1;
if(l < mid) tr[mid].l = build(l, mid - 1, now ^ 1);
else tr[mid].l = 0;
if(r > mid) tr[mid].r = build(mid + 1, r, now ^ 1);
else tr[mid].r = 0;
push_up(mid);
return mid;
}
int query(int o, Point T, int now) {
if(o == 0) return 0;
if(tr[o].t == T) return tr[o].col;
push_down(o);
D = now;
if(T.d[D] < tr[o].t.d[D]) return query(tr[o].l, T, now ^ 1);
else return query(tr[o].r, T, now ^ 1);
}
void update(int o, int l, int r, int d, int u, int c) {
if(tr[o].mn[0] >= l && tr[o].mx[0] <= r && tr[o].mn[1] >= d && tr[o].mx[1] <= u) {
tr[o].col = c; tr[o].lz = true;
return;
}
if(tr[o].mn[0] > r || tr[o].mx[0] < l || tr[o].mn[1] > u || tr[o].mx[1] < d) return;
push_down(o);
if(tr[o].t[0] >= l && tr[o].t[0] <= r && tr[o].t[1] >= d && tr[o].t[1] <= u) {
tr[o].col = c;
}
if(tr[o].l) update(tr[o].l, l, r, d, u, c);
if(tr[o].r) update(tr[o].r, l, r, d, u, c);
}
}kd;
int dfn[N], dfn2[N], deep[N], T;
int n, c, q;
vector <int> g[N];
void dfs(int u, int d) {
dfn[u] = ++T;
deep[u] = d;
for(int i = 0; i < sz(g[u]); i++) {
int v = g[u][i];
dfs(v, d + 1);
}
dfn2[u] = T;
}
void run(){
T = rt = 0;
cin >> n >> c >> q;
for(int i = 1; i <= n; i++) g[i].clear();
for(int i = 2; i <= n; i++) {
int x; cin >> x;
g[x].push_back(i);
}
dfs(1, 1);
for(int i = 1; i <= n; i++) {
p[i] = Point(dfn[i], deep[i]);
}
rt = kd.build(1, n, 0);
int ans = 0;
for(int i = 1; i <= q; i++) {
int a, k, x; cin >> a >> k >> x;
if(x == 0) {
ans = (ans + 1ll * i * kd.query(rt, Point(dfn[a], deep[a]), 0) % MOD) % MOD;
} else {
int l = dfn[a], r = dfn2[a];
int u = min(n, deep[a] + k), d = deep[a];
kd.update(rt, l, r, d, u, x);
}
}
cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
int T; cin >> T;
while(T--) run();
return 0;
}
重要的是自信,一旦有了自信,人就会赢得一切。