【洛谷P3973】[TJOI2015]线性代数(最小割)
题意:
给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\)。
求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^T\)最大。
思路:
化简最后得:
\[\sum_{i=1}^n\sum_{j=1}^nB_{i,j}A_iA_j-\sum_{i=1}^nA_iC_i
\]
之后考虑所有的\(A_i\)都为\(1\),现在要将一部分\(A_i\)变为\(0\),最后的损失最小。
因为最后的\(A\)为\(01\)矩阵,显然最后结果为一个集合;结合损失最小,考虑最小割。
式子中只与\(A_i,A_j\)两个元素有关,单独考虑这两个元素,发现是一个很经典的最小割模型。然后解下方程就没了。
代码如下:
/*
* Author: heyuhhh
* Created Time: 2019/10/29 17:17:13
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 500 + 5;
int n;
int a[N][N];
template <class T>
struct Dinic{
struct Edge{
int v, next;
T flow;
Edge(){}
Edge(int v, int next, T flow) : v(v), next(next), flow(flow) {}
}e[N * N * 10];
int head[N], tot;
int dep[N];
void init() {
memset(head, -1, sizeof(head)); tot = 0;
}
void adde(int u, int v, T w, T rw = 0) {
e[tot] = Edge(v, head[u], w);
head[u] = tot++;
e[tot] = Edge(u, head[v], rw);
head[v] = tot++;
}
bool BFS(int _S, int _T) {
memset(dep, 0, sizeof(dep));
queue <int> q; q.push(_S); dep[_S] = 1;
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(!dep[v] && e[i].flow > 0) {
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
return dep[_T] != 0;
}
T dfs(int _S, int _T, T a) {
T flow = 0, f;
if(_S == _T || a == 0) return a;
for(int i = head[_S]; ~i; i = e[i].next) {
int v = e[i].v;
if(dep[v] != dep[_S] + 1) continue;
f = dfs(v, _T, min(a, e[i].flow));
if(f) {
e[i].flow -= f;
e[i ^ 1].flow += f;
flow += f;
a -= f;
if(a == 0) break;
}
}
if(!flow) dep[_S] = -1;
return flow;
}
T dinic(int _S, int _T) {
T max_flow = 0;
while(BFS(_S, _T)) max_flow += dfs(_S, _T, INF);
return max_flow;
}
};
Dinic <int> solver;
int c[N], v[N];
void run() {
solver.init();
cin >> n;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
cin >> a[i][j];
}
}
for(int i = 1; i <= n; i++) cin >> c[i];
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) v[i] += a[i][j] + a[j][i];
v[i] -= a[i][i];
v[i] <<= 1;
}
int S = 0, T = n + 1;
for(int i = 1; i <= n; i++) {
int t = 0;
for(int j = 1; j <= n; j++) {
if(i != j) {
solver.adde(i, j, a[i][j] + a[j][i]);
t += v[i] - a[i][j] - a[j][i];
}
}
solver.adde(i, T, 2 * c[i]);
solver.adde(S, i, t);
}
int ans = 0;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
ans += a[i][j];
}
}
int flow = solver.dinic(S, T);
dbg(ans, flow);
cout << (ans - flow / 2) << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
freopen("../input.in", "r", stdin);
freopen("../output.out", "w", stdout);
run();
return 0;
}
重要的是自信,一旦有了自信,人就会赢得一切。