P3731 [HAOI2017]新型城市化(tarjan+网络流)

洛谷

题意:
给出两个最大团的补图,现在要求增加一条边,使得最大最大团个数增加至少\(1\)

思路:

  • 我们求出团的补图,问题可以转换为:对于一个二分图,选择删掉一条边,能够增大其最大独立集的点集数。
  • 然后做法就是考虑在最大流的残余网络上,对容量为\(1\)的边求强连通分量(包含源点、汇点)。
  • 若存在一条边\((x,y)\)为匹配边,并且\(x,y\)在不同的强连通分量中,那么\((x,y)\)这条边为必经边,即最大匹配中包含这条边;若\((x,y)\)为非匹配边并且\(x,y\)在同一强连通分量中,那么\((x,y)\)为最大匹配的可行边,即这条边存在于至少一个最大匹配中。
  • 证明的话,就拿必经边来说,若\((x,y)\)在同一强连通分量中,我们去掉\(x,y\)这条边,还是有增广路径能从\(x\)\(y\),此时最大匹配没变并且\((x,y)\)流量为\(0\)。所以\((x,y)\)不能在同一强连通分量中。

注意一开始要对图进行二分图染色。
代码如下:

#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 5e4 + 5, M = 1e6 + 5;

#define INF 0x3f3f3f3f
template <class T>
struct Dinic{
    struct Edge{
        int v, next;
        T flow;
        Edge(){}
        Edge(int v, int next, T flow) : v(v), next(next), flow(flow) {}
    }e[M << 1];
    int head[N], tot;
    int dep[N];
    void init() {
        memset(head, -1, sizeof(head)); tot = 0;
    }
    void adde(int u, int v, T w, T rw = 0) {
        e[tot] = Edge(v, head[u], w);
        head[u] = tot++;
        e[tot] = Edge(u, head[v], rw);
        head[v] = tot++;
    }
    bool BFS(int _S, int _T) {
        memset(dep, 0, sizeof(dep));
        queue <int> q; q.push(_S); dep[_S] = 1;
        while(!q.empty()) {
            int u = q.front(); q.pop();
            for(int i = head[u]; ~i; i = e[i].next) {
                int v = e[i].v;
                if(!dep[v] && e[i].flow > 0) {
                    dep[v] = dep[u] + 1;
                    q.push(v);
                }
            }
        }
        return dep[_T] != 0;
    }
    T dfs(int _S, int _T, T a) {
        T flow = 0, f;
        if(_S == _T || a == 0) return a;
        for(int i = head[_S]; ~i; i = e[i].next) {
            int v = e[i].v;
            if(dep[v] != dep[_S] + 1) continue;
            f = dfs(v, _T, min(a, e[i].flow));
            if(f) {
                e[i].flow -= f;
                e[i ^ 1].flow += f;
                flow += f;
                a -= f;
                if(a == 0) break;
            }
        }
        if(!flow) dep[_S] = -1;
        return flow;
    }
    T dinic(int _S, int _T) {
        T max_flow = 0;
        while(BFS(_S, _T)) max_flow += dfs(_S, _T, INF);
        return max_flow;
    }
    stack <int> s;
    int dfs_T, num;
    int scc[N], dfn[N], low[N];
    void Tarjan(int u){
        dfn[u] = low[u] = ++dfs_T;
        s.push(u);
        for(int i = head[u]; i != -1;i = e[i].next){
            int v = e[i].v;
            if(e[i].flow == 0) continue;
            if(!dfn[v]){
                Tarjan(v);
                low[u] = min(low[u], low[v]);
            }else if(!scc[v]){
                low[u] = min(low[u], dfn[v]);
            }
        }
        if(low[u] == dfn[u]){
            num++; int now;
            do{
                now = s.top(); s.pop();
                scc[now] = num;
            }while(!s.empty() && now!=u);
        }
    }
};
Dinic <int> solve;

int n, m;

vector <int> g[N];
int col[N];
void color(int u, int c) {
    col[u] = c;
    for(auto v : g[u]) {
        if(!col[v]) color(v, 3 - c);
    }
}

void run() {
    solve.init();
    for(int i = 1; i <= m; i++) {
        int u, v; cin >> u >> v;
        g[u].push_back(v);
        g[v].push_back(u);
    }
    for(int i = 1; i <= n; i++) {
        if(!col[i]) color(i, 1);
    }
    int t = 2 * n + 1;
    for(int i = 1; i <= n; i++) {
        if(col[i] == 1) {
            solve.adde(0, i, 1);
            for(auto j : g[i]) {
                solve.adde(i, j + n, 1);
            }
        } else {
            solve.adde(i + n, t, 1);
        }
    }
    int flow = solve.dinic(0, t);
    dbg(flow);
    for(int i = 0; i <= t; i++) {
        if(!solve.dfn[i]) {
            solve.Tarjan(i);
        }
    }
    dbg(solve.num);
    vector <pii> ans;
    for(int u = 1; u <= n; u++) {
        for(int i = solve.head[u]; i != -1; i = solve.e[i].next) {
            int v = solve.e[i].v;
            if(solve.e[i].flow == 1) continue;
            if(v > n && solve.scc[u] != solve.scc[v]) {
                int x = u, y = v - n;
                if(x > y) swap(x, y);
                ans.push_back(MP(x, y));
            }
        }
    }
    sort(all(ans), [&](pii A, pii B) {
        if(A.fi == B.fi) return A.se < B.se;
        return A.fi < B.fi;
    });
    pt(sz(ans));
    for(auto it : ans) cout << it.fi << ' ' << it.se << '\n';
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    cout << fixed << setprecision(20);
#ifdef Local
    freopen("../input.in", "r", stdin);
    freopen("../output.out", "w", stdout);
#endif
    while(cin >> n >> m) run();
    return 0;
}
posted @ 2019-10-21 23:11  heyuhhh  阅读(190)  评论(0编辑  收藏  举报