摘要:
平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。题目:输入一棵二叉树的根结点,判断该树是不是平衡二叉树。如果某二叉树中任意结点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。例如下图中的二叉树就是一棵平衡二叉树:在本系列博客的第27题,我们曾介绍过如何求二叉树的深度。有了求二叉树的深度的经验之后再解决这个问题,我们很容易就能想到一个思路:在遍历树的每个结点的时候,调用函数TreeDepth得到它的左右子树的深度。如果每个结点的左右子树 阅读全文
摘要:
题目:输入一棵二叉树的根结点,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。例如:输入二叉树: 10 / \ 6 14 / / \ 4 12 16输出该树的深度3。二叉树的结点定义如下:struct SBinaryTreeNode // a node of the binary tree{ int m_nValue; // value of node SBinaryTreeNode *m_pLeft; // left child of node SBinaryTreeNo... 阅读全文
摘要:
题目:输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果。如果是返回true,否则返回false。例如输入5、7、6、9、11、10、8,由于这一整数序列是如下树的后序遍历结果: 8 / \ 6 10 / \/ \ 5 7911因此返回true。如果输入7、4、6、5,没有哪棵树的后序遍历的结果是这个序列,因此返回false。分析:这是一道trilogy的笔试题,主要考查对二元查找树的理解。在后续遍历得到的序列中,最后一个元素为树的根结点。从头开始扫描这个序列,比根结点小的元素都应该位于序列的左半部分;从第一个大于根结点开始到根结点前面的一个元素为止,所有元素都应该大于根结点,因为 阅读全文