二叉堆排序
/** * @Information: * @Author: HeHaoYuan * @Date: Created at 10:40 on 2019/7/31 * @Package_Name: PACKAGE_NAME */ import java.util.Arrays; public class TestHeap implements IHeap{ private int[] elem; private int usedSize; private static final int DEFAULT_SIZE = 10; public TestHeap(){ this.elem = new int[DEFAULT_SIZE]; this.usedSize = 0; } @Override //从每棵子树的根节点开始调整,调整的长度len public void AdjustDown(int root, int len) { int parent = root; int child = 2*parent+1; while (child < len) { //找左右孩子的最大值 if( child+1 < len && elem[child] < elem[child+1]){ //右孩子大,child+1有可能越界 ++child;//若右边孩子大,则child指针右移一位,child下标存放的是左右孩子的最大值 } //child下标存放的是左右孩子的最大值 //如果左右孩子的最大值大于父节点,则进行交换 if(elem[child] > elem[parent]){ //交换 int tmp = elem[child]; elem[child] = elem[parent]; elem[parent] = tmp; parent = child;//孩子节点变成了父母节点,parent指向孩子节点,child节点指向左孩子,因为不一定只执行一次 child = 2*parent+1; }else { break; } } } //创建一个大根堆 @Override public void initHeap(int[] array) { for (int i = 0; i < array.length; i++) { this.elem[i] = array[i]; this.usedSize++; } //从最后一棵子树的父节点开始向下调整 //子推父,孩子节点为n,父节点为(n-1)/2 //父推子,父节点为n,左孩子节点为2n+1,右孩子节点为2n+2 for (int i = (array.length-1-1)/2; i >= 0 ; i--) { AdjustDown(i,this.usedSize); } } @Override public void AdjustUp(int child) { int parent = (child-1)/2; while (child > 0){ if(elem[child] > elem[parent]){ int tmp = elem[child]; elem[child] = elem[parent]; elem[parent] = tmp; //孩子节点变为父节点,父节点向上走 child = parent; parent = (child-1)/2; }else { break; } } } public boolean isFull() { return this.usedSize == this.elem.length; } @Override public void pushHeap(int item) { if(isFull()){ //2倍扩容 this.elem = Arrays.copyOf(this.elem, 2*this.elem.length); } this.elem[this.usedSize] = item; this.usedSize++; //插入节点后就不是大根堆了,需要向上调整 AdjustUp(this.usedSize-1); } public boolean isEmpty() { return this.usedSize == 0; } @Override //删除堆顶元素 public int popHeap() { if(isEmpty()){ throw new UnsupportedOperationException("堆为空"); } //堆顶元素和最后一个元素进行交换,之后删除原来的堆顶元素 int oldData = elem[0]; int tmp = elem[0]; elem[0] = elem[this.usedSize-1]; elem[this.usedSize-1] = tmp; this.usedSize--; 又不是大根堆了,从根元素开始向下调整 AdjustDown(0,this.usedSize); return oldData; } @Override //返回堆顶元素,不删除数据 public int getHeapTop() { if(isEmpty()){ throw new UnsupportedOperationException("堆为空"); } return elem[0]; } /** * 时间复杂度: * O(n log 2n) * 空间复杂度:o(1) * 稳定性:不稳定 */ @Override public void HeapSort() { /* for (int i = (array.length-1-1)/2; i >= 0 ; i--) { AdjustDown(i,this.usedSize); }*/ //要交换的最后一个下标 int end = this.usedSize-1; while (end > 0) { int tmp = elem[0]; elem[0] = elem[end]; elem[end] = tmp; AdjustDown(0,end); end--; } } // topK 作业:一亿个数据找出十个最大/最小的数据 @Override public void show() { for (int i = 0; i < this.usedSize; i++) { System.out.print(elem[i] +" "); } System.out.println(); } } class Test_Heap{ public static void main(String[] args) { TestHeap testHeap = new TestHeap(); int[] array = {1,2,3,4,5,6,7,8,9,10}; testHeap.initHeap(array); System.out.print("初始化: "); testHeap.show(); testHeap.pushHeap(11); System.out.print("将11插入到堆中: ");testHeap.show(); testHeap.popHeap(); System.out.print("返回堆顶元素,删除数据元素: "); testHeap.show(); testHeap.HeapSort(); System.out.print("堆排序: "); testHeap.show(); System.out.print("返回堆顶元素:"); System.out.println(testHeap.getHeapTop()); } } interface IHeap { //向下调整 void AdjustDown(int root,int len); //初始化建立大根堆 public void initHeap(int[] array); //向上调整,从孩子节点开始调整 void AdjustUp(int child); // 插入 item 到堆中 void pushHeap(int item); // 返回堆顶元素,删除数据元素 int popHeap(); // 返回堆顶元素,不删除数据元素 int getHeapTop(); //堆排序 void HeapSort(); //打印堆 void show(); }
github:https://github.com/hehaoyuan/Data-Structure/blob/master/%E5%A4%A7%E6%A0%B9%E5%A0%86.java