第17条:在参数上面迭代时,要多加小心
实验中用的 init.py
15
35
80
def read_visits(data_path):
with open(data_path) as f:
for line in f:
yield int(line)
def normalize_copy(numbers):
numbers = list(numbers)
total = sum(numbers)
result = []
for value in numbers:
percent = 100 * value / total
result.append(percent)
return result
it = read_visits('__init__.py')
percentages = normalize_copy(it)
print(percentages)
输出:
[11.538461538461538,26.923076923076923,61.53846153846154]
2.传入函数
def normalize_func(get_iter):
total = sum(get_iter())
result = []
for value in get_iter():#New iterator
percent = 100 * value / total
result.append(percent)
return result
rcentages = normalize_func(lambda: read_visits('__init__.py'))
print(percentages)
2. 类的迭代器
class ReadVisits(object):
def __init__(self,data_path):
self.data_path = data_path
def __iter__(self):
with open(self.data_path) as f:
for line in f:
yield int(line)
visits = ReadVisits('__init__.py')
percentages = list(visits)
print(percentages)
输出:
[15, 35, 80]
3.限定必须传入容器对象
def normalize_defensive(numbers):
if iter(numbers) is iter(numbers): # An iterator -- bad!
raise TypeError('Must supply a container')
total = sum(numbers)
result = []
for value in numbers:
percent = 100 * value / total
result.append(percent)
return result
visits = [15,35,80]
normalize_defensive(visits)
visits = ReadVisits('__init__.py')
a = normalize_defensive(visits)
print('a',a)
输出:a [11.538461538461538, 26.923076923076923, 61.53846153846154]
- 把_iter._方法实现为生成器,即可定义自己的容器类型。
- 想判断某个值是迭代器还是容器,可以拿该值为参数,两次调用iter函数,若结果相同,则是迭代器,调用内置的next函数,即可令该迭代器前进一步。
写入自己的博客中才能记得长久