第17条:在参数上面迭代时,要多加小心
实验中用的 init.py
15
35
80
def read_visits(data_path):
with open(data_path) as f:
for line in f:
yield int(line)
def normalize_copy(numbers):
numbers = list(numbers)
total = sum(numbers)
result = []
for value in numbers:
percent = 100 * value / total
result.append(percent)
return result
it = read_visits('__init__.py')
percentages = normalize_copy(it)
print(percentages)
输出:
[11.538461538461538,26.923076923076923,61.53846153846154]
2.传入函数
def normalize_func(get_iter):
total = sum(get_iter())
result = []
for value in get_iter():#New iterator
percent = 100 * value / total
result.append(percent)
return result
rcentages = normalize_func(lambda: read_visits('__init__.py'))
print(percentages)
2. 类的迭代器
class ReadVisits(object):
def __init__(self,data_path):
self.data_path = data_path
def __iter__(self):
with open(self.data_path) as f:
for line in f:
yield int(line)
visits = ReadVisits('__init__.py')
percentages = list(visits)
print(percentages)
输出:
[15, 35, 80]
3.限定必须传入容器对象
def normalize_defensive(numbers):
if iter(numbers) is iter(numbers): # An iterator -- bad!
raise TypeError('Must supply a container')
total = sum(numbers)
result = []
for value in numbers:
percent = 100 * value / total
result.append(percent)
return result
visits = [15,35,80]
normalize_defensive(visits)
visits = ReadVisits('__init__.py')
a = normalize_defensive(visits)
print('a',a)
输出:a [11.538461538461538, 26.923076923076923, 61.53846153846154]
- 把_iter._方法实现为生成器,即可定义自己的容器类型。
- 想判断某个值是迭代器还是容器,可以拿该值为参数,两次调用iter函数,若结果相同,则是迭代器,调用内置的next函数,即可令该迭代器前进一步。
写入自己的博客中才能记得长久
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!