python的list费时对比
1. 生成列表的费时对比
#_*_coding:utf-8_*_
from timeit import Timer
def test1():
li =[]
for i in range(10000):
li.append(i)
def test2():
li = []
for i in range(10000):
li += [i]
def test3():
li = [i for i in range(10000)]
def test4():
li = list(range(10000))
def test5():
li = []
for i in range(10000):
li.extend([i])
timer1 = Timer("test1()","from __main__ import test1")
print("timer1_append(i):",timer1.timeit(number=1000),'seconds')
timer2 = Timer("test2()","from __main__ import test2")
print("timer2_[i for i in range(10000)]:",timer2.timeit(number=1000),'seconds')
timer3 = Timer("test3()","from __main__ import test3")
print("timer3_+=[i]:",timer3.timeit(number=1000),'seconds')
timer4 = Timer("test4()","from __main__ import test4")
print("timer4_list(range(10000)):",timer4.timeit(number=1000),'seconds')
timer5 = Timer("test5()","from __main__ import test5")
print("timer5_extend([i]):",timer5.timeit(number=1000),'seconds')
输出:
timer1_append(i): 0.753196745132229 seconds
timer2_[i for i in range(10000)]: 0.6985947891373111 seconds
timer3_+=[i]: 0.3255351125585728 seconds
timer4_list(range(10000)): 0.188680616099971 seconds
timer5_extend([i]): 1.0021387690009393 seconds
2. 往列表中添加元素的费时对比
#_*_coding:utf-8_*_
from timeit import Timer
def test1():
li =[]
for i in range(10000):
li.append(i)
def test7():
li = []
for i in range(10000):
li.insert(0,i)
timer1 = Timer("test1()","from __main__ import test1")
print("timer1_append(i):",timer1.timeit(number=1000),'seconds')
timer7 = Timer("test7()","from __main__ import test7")
print("timer7_insert(0,i)):",timer7.timeit(number=1000),'seconds')
输出:
timer1_append(i): 0.7587850447087984 seconds
timer7_insert(0,i)): 19.461151800961186 seconds
写入自己的博客中才能记得长久
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!