Tensorflow训练结果测试

 代码参考(https://blog.csdn.net/disiwei1012/article/details/79928679)

import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt

# import coco
from mrcnn import utils
from mrcnn import model as modellib
from mrcnn import visualize
from mrcnn.config import Config

#%matplotlib inline

# Root directory of the project
ROOT_DIR = os.getcwd()

# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")

# Local path to trained weights file
COCO_MODEL_PATH = "mask_rcnn_shapes_0001.h5"


# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")


class ShapesConfig(Config):
  """Configuration for training on the toy shapes dataset.
  Derives from the base Config class and overrides values specific
  to the toy shapes dataset.
  """
  # Give the configuration a recognizable name
  NAME = "shapes"

  # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
  # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
  GPU_COUNT = 1
  IMAGES_PER_GPU = 1

  # Number of classes (including background)
  NUM_CLASSES = 1 + 1 # background + 3 shapes

  # Use small images for faster training. Set the limits of the small side
  # the large side, and that determines the image shape.
  IMAGE_MIN_DIM = 1024
  IMAGE_MAX_DIM = 1280

  # Use smaller anchors because our image and objects are small
  RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6) # anchor side in pixels

  # Reduce training ROIs per image because the images are small and have
  # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
  TRAIN_ROIS_PER_IMAGE = 32

  # Use a small epoch since the data is simple
  STEPS_PER_EPOCH = 100

  # use small validation steps since the epoch is small
  VALIDATION_STEPS = 5

class InferenceConfig(ShapesConfig):
  # Set batch size to 1 since we'll be running inference on
  # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
  GPU_COUNT = 1
  IMAGES_PER_GPU = 1

config = InferenceConfig()
config.display()

  # Create model object in inference mode.
  model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)

  # Load weights trained on MS-COCO
  model.load_weights(COCO_MODEL_PATH, by_name=True)

  # COCO Class names
  # Index of the class in the list is its ID. For example, to get ID of
  # the teddy bear class, use: class_names.index('teddy bear')
  class_names = ['BG', 'mono']

# Load a random image from the images folder

file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))

# Run detection
results = model.detect([image], verbose=1)

# Visualize results
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
class_names, r['scores'])
print('OK')

 

 

 

posted @ 2018-08-18 21:29  西北逍遥  阅读(1160)  评论(0编辑  收藏  举报