Collections
Collections
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 | /* * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package java.util; import java.io.Serializable; import java.io.ObjectOutputStream; import java.io.IOException; import java.lang.reflect.Array; import java.util.function.BiConsumer; import java.util.function.BiFunction; import java.util.function.Consumer; import java.util.function.Function; import java.util.function.Predicate; import java.util.function.UnaryOperator; import java.util.stream.IntStream; import java.util.stream.Stream; import java.util.stream.StreamSupport; /** * This class consists exclusively of static methods that operate on or return * collections. It contains polymorphic algorithms that operate on * collections, "wrappers", which return a new collection backed by a * specified collection, and a few other odds and ends. * * <p>The methods of this class all throw a <tt>NullPointerException</tt> * if the collections or class objects provided to them are null. * * <p>The documentation for the polymorphic algorithms contained in this class * generally includes a brief description of the <i>implementation</i>. Such * descriptions should be regarded as <i>implementation notes</i>, rather than * parts of the <i>specification</i>. Implementors should feel free to * substitute other algorithms, so long as the specification itself is adhered * to. (For example, the algorithm used by <tt>sort</tt> does not have to be * a mergesort, but it does have to be <i>stable</i>.) * * <p>The "destructive" algorithms contained in this class, that is, the * algorithms that modify the collection on which they operate, are specified * to throw <tt>UnsupportedOperationException</tt> if the collection does not * support the appropriate mutation primitive(s), such as the <tt>set</tt> * method. These algorithms may, but are not required to, throw this * exception if an invocation would have no effect on the collection. For * example, invoking the <tt>sort</tt> method on an unmodifiable list that is * already sorted may or may not throw <tt>UnsupportedOperationException</tt>. * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @author Josh Bloch * @author Neal Gafter * @see Collection * @see Set * @see List * @see Map * @since 1.2 */ public class Collections { // Suppresses default constructor, ensuring non-instantiability. private Collections() { } // Algorithms /* * Tuning parameters for algorithms - Many of the List algorithms have * two implementations, one of which is appropriate for RandomAccess * lists, the other for "sequential." Often, the random access variant * yields better performance on small sequential access lists. The * tuning parameters below determine the cutoff point for what constitutes * a "small" sequential access list for each algorithm. The values below * were empirically determined to work well for LinkedList. Hopefully * they should be reasonable for other sequential access List * implementations. Those doing performance work on this code would * do well to validate the values of these parameters from time to time. * (The first word of each tuning parameter name is the algorithm to which * it applies.) */ private static final int BINARYSEARCH_THRESHOLD = 5000 ; private static final int REVERSE_THRESHOLD = 18 ; private static final int SHUFFLE_THRESHOLD = 5 ; private static final int FILL_THRESHOLD = 25 ; private static final int ROTATE_THRESHOLD = 100 ; private static final int COPY_THRESHOLD = 10 ; private static final int REPLACEALL_THRESHOLD = 11 ; private static final int INDEXOFSUBLIST_THRESHOLD = 35 ; /** * Sorts the specified list into ascending order, according to the * {@linkplain Comparable natural ordering} of its elements. * All elements in the list must implement the {@link Comparable} * interface. Furthermore, all elements in the list must be * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} * must not throw a {@code ClassCastException} for any elements * {@code e1} and {@code e2} in the list). * * <p>This sort is guaranteed to be <i>stable</i>: equal elements will * not be reordered as a result of the sort. * * <p>The specified list must be modifiable, but need not be resizable. * * @implNote * This implementation defers to the {@link List#sort(Comparator)} * method using the specified list and a {@code null} comparator. * * @param <T> the class of the objects in the list * @param list the list to be sorted. * @throws ClassCastException if the list contains elements that are not * <i>mutually comparable</i> (for example, strings and integers). * @throws UnsupportedOperationException if the specified list's * list-iterator does not support the {@code set} operation. * @throws IllegalArgumentException (optional) if the implementation * detects that the natural ordering of the list elements is * found to violate the {@link Comparable} contract * @see List#sort(Comparator) */ @SuppressWarnings ( "unchecked" ) public static <T extends Comparable<? super T>> void sort(List<T> list) { list.sort( null ); } /** * Sorts the specified list according to the order induced by the * specified comparator. All elements in the list must be <i>mutually * comparable</i> using the specified comparator (that is, * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} * for any elements {@code e1} and {@code e2} in the list). * * <p>This sort is guaranteed to be <i>stable</i>: equal elements will * not be reordered as a result of the sort. * * <p>The specified list must be modifiable, but need not be resizable. * * @implNote * This implementation defers to the {@link List#sort(Comparator)} * method using the specified list and comparator. * * @param <T> the class of the objects in the list * @param list the list to be sorted. * @param c the comparator to determine the order of the list. A * {@code null} value indicates that the elements' <i>natural * ordering</i> should be used. * @throws ClassCastException if the list contains elements that are not * <i>mutually comparable</i> using the specified comparator. * @throws UnsupportedOperationException if the specified list's * list-iterator does not support the {@code set} operation. * @throws IllegalArgumentException (optional) if the comparator is * found to violate the {@link Comparator} contract * @see List#sort(Comparator) */ @SuppressWarnings ({ "unchecked" , "rawtypes" }) public static <T> void sort(List<T> list, Comparator<? super T> c) { list.sort(c); } /** * Searches the specified list for the specified object using the binary * search algorithm. The list must be sorted into ascending order * according to the {@linkplain Comparable natural ordering} of its * elements (as by the {@link #sort(List)} method) prior to making this * call. If it is not sorted, the results are undefined. If the list * contains multiple elements equal to the specified object, there is no * guarantee which one will be found. * * <p>This method runs in log(n) time for a "random access" list (which * provides near-constant-time positional access). If the specified list * does not implement the {@link RandomAccess} interface and is large, * this method will do an iterator-based binary search that performs * O(n) link traversals and O(log n) element comparisons. * * @param <T> the class of the objects in the list * @param list the list to be searched. * @param key the key to be searched for. * @return the index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt> if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @throws ClassCastException if the list contains elements that are not * <i>mutually comparable</i> (for example, strings and * integers), or the search key is not mutually comparable * with the elements of the list. */ public static <T> int binarySearch(List<? extends Comparable<? super T>> list, T key) { if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD) return Collections.indexedBinarySearch(list, key); else return Collections.iteratorBinarySearch(list, key); } private static <T> int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) { int low = 0 ; int high = list.size()- 1 ; while (low <= high) { int mid = (low + high) >>> 1 ; Comparable<? super T> midVal = list.get(mid); int cmp = midVal.compareTo(key); if (cmp < 0 ) low = mid + 1 ; else if (cmp > 0 ) high = mid - 1 ; else return mid; // key found } return -(low + 1 ); // key not found } private static <T> int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key) { int low = 0 ; int high = list.size()- 1 ; ListIterator<? extends Comparable<? super T>> i = list.listIterator(); while (low <= high) { int mid = (low + high) >>> 1 ; Comparable<? super T> midVal = get(i, mid); int cmp = midVal.compareTo(key); if (cmp < 0 ) low = mid + 1 ; else if (cmp > 0 ) high = mid - 1 ; else return mid; // key found } return -(low + 1 ); // key not found } /** * Gets the ith element from the given list by repositioning the specified * list listIterator. */ private static <T> T get(ListIterator<? extends T> i, int index) { T obj = null ; int pos = i.nextIndex(); if (pos <= index) { do { obj = i.next(); } while (pos++ < index); } else { do { obj = i.previous(); } while (--pos > index); } return obj; } /** * Searches the specified list for the specified object using the binary * search algorithm. The list must be sorted into ascending order * according to the specified comparator (as by the * {@link #sort(List, Comparator) sort(List, Comparator)} * method), prior to making this call. If it is * not sorted, the results are undefined. If the list contains multiple * elements equal to the specified object, there is no guarantee which one * will be found. * * <p>This method runs in log(n) time for a "random access" list (which * provides near-constant-time positional access). If the specified list * does not implement the {@link RandomAccess} interface and is large, * this method will do an iterator-based binary search that performs * O(n) link traversals and O(log n) element comparisons. * * @param <T> the class of the objects in the list * @param list the list to be searched. * @param key the key to be searched for. * @param c the comparator by which the list is ordered. * A <tt>null</tt> value indicates that the elements' * {@linkplain Comparable natural ordering} should be used. * @return the index of the search key, if it is contained in the list; * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The * <i>insertion point</i> is defined as the point at which the * key would be inserted into the list: the index of the first * element greater than the key, or <tt>list.size()</tt> if all * elements in the list are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @throws ClassCastException if the list contains elements that are not * <i>mutually comparable</i> using the specified comparator, * or the search key is not mutually comparable with the * elements of the list using this comparator. */ @SuppressWarnings ( "unchecked" ) public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) { if (c== null ) return binarySearch((List<? extends Comparable<? super T>>) list, key); if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD) return Collections.indexedBinarySearch(list, key, c); else return Collections.iteratorBinarySearch(list, key, c); } private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) { int low = 0 ; int high = l.size()- 1 ; while (low <= high) { int mid = (low + high) >>> 1 ; T midVal = l.get(mid); int cmp = c.compare(midVal, key); if (cmp < 0 ) low = mid + 1 ; else if (cmp > 0 ) high = mid - 1 ; else return mid; // key found } return -(low + 1 ); // key not found } private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) { int low = 0 ; int high = l.size()- 1 ; ListIterator<? extends T> i = l.listIterator(); while (low <= high) { int mid = (low + high) >>> 1 ; T midVal = get(i, mid); int cmp = c.compare(midVal, key); if (cmp < 0 ) low = mid + 1 ; else if (cmp > 0 ) high = mid - 1 ; else return mid; // key found } return -(low + 1 ); // key not found } /** * Reverses the order of the elements in the specified list.<p> * * This method runs in linear time. * * @param list the list whose elements are to be reversed. * @throws UnsupportedOperationException if the specified list or * its list-iterator does not support the <tt>set</tt> operation. */ @SuppressWarnings ({ "rawtypes" , "unchecked" }) public static void reverse(List<?> list) { int size = list.size(); if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) { for ( int i= 0 , mid=size>> 1 , j=size- 1 ; i<mid; i++, j--) swap(list, i, j); } else { // instead of using a raw type here, it's possible to capture // the wildcard but it will require a call to a supplementary // private method ListIterator fwd = list.listIterator(); ListIterator rev = list.listIterator(size); for ( int i= 0 , mid=list.size()>> 1 ; i<mid; i++) { Object tmp = fwd.next(); fwd.set(rev.previous()); rev.set(tmp); } } } /** * Randomly permutes the specified list using a default source of * randomness. All permutations occur with approximately equal * likelihood. * * <p>The hedge "approximately" is used in the foregoing description because * default source of randomness is only approximately an unbiased source * of independently chosen bits. If it were a perfect source of randomly * chosen bits, then the algorithm would choose permutations with perfect * uniformity. * * <p>This implementation traverses the list backwards, from the last * element up to the second, repeatedly swapping a randomly selected element * into the "current position". Elements are randomly selected from the * portion of the list that runs from the first element to the current * position, inclusive. * * <p>This method runs in linear time. If the specified list does not * implement the {@link RandomAccess} interface and is large, this * implementation dumps the specified list into an array before shuffling * it, and dumps the shuffled array back into the list. This avoids the * quadratic behavior that would result from shuffling a "sequential * access" list in place. * * @param list the list to be shuffled. * @throws UnsupportedOperationException if the specified list or * its list-iterator does not support the <tt>set</tt> operation. */ public static void shuffle(List<?> list) { Random rnd = r; if (rnd == null ) r = rnd = new Random(); // harmless race. shuffle(list, rnd); } private static Random r; /** * Randomly permute the specified list using the specified source of * randomness. All permutations occur with equal likelihood * assuming that the source of randomness is fair.<p> * * This implementation traverses the list backwards, from the last element * up to the second, repeatedly swapping a randomly selected element into * the "current position". Elements are randomly selected from the * portion of the list that runs from the first element to the current * position, inclusive.<p> * * This method runs in linear time. If the specified list does not * implement the {@link RandomAccess} interface and is large, this * implementation dumps the specified list into an array before shuffling * it, and dumps the shuffled array back into the list. This avoids the * quadratic behavior that would result from shuffling a "sequential * access" list in place. * * @param list the list to be shuffled. * @param rnd the source of randomness to use to shuffle the list. * @throws UnsupportedOperationException if the specified list or its * list-iterator does not support the <tt>set</tt> operation. */ @SuppressWarnings ({ "rawtypes" , "unchecked" }) public static void shuffle(List<?> list, Random rnd) { int size = list.size(); if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) { for ( int i=size; i> 1 ; i--) swap(list, i- 1 , rnd.nextInt(i)); } else { Object arr[] = list.toArray(); // Shuffle array for ( int i=size; i> 1 ; i--) swap(arr, i- 1 , rnd.nextInt(i)); // Dump array back into list // instead of using a raw type here, it's possible to capture // the wildcard but it will require a call to a supplementary // private method ListIterator it = list.listIterator(); for ( int i= 0 ; i<arr.length; i++) { it.next(); it.set(arr[i]); } } } /** * Swaps the elements at the specified positions in the specified list. * (If the specified positions are equal, invoking this method leaves * the list unchanged.) * * @param list The list in which to swap elements. * @param i the index of one element to be swapped. * @param j the index of the other element to be swapped. * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt> * is out of range (i < 0 || i >= list.size() * || j < 0 || j >= list.size()). * @since 1.4 */ @SuppressWarnings ({ "rawtypes" , "unchecked" }) public static void swap(List<?> list, int i, int j) { // instead of using a raw type here, it's possible to capture // the wildcard but it will require a call to a supplementary // private method final List l = list; l.set(i, l.set(j, l.get(i))); } /** * Swaps the two specified elements in the specified array. */ private static void swap(Object[] arr, int i, int j) { Object tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } /** * Replaces all of the elements of the specified list with the specified * element. <p> * * This method runs in linear time. * * @param <T> the class of the objects in the list * @param list the list to be filled with the specified element. * @param obj The element with which to fill the specified list. * @throws UnsupportedOperationException if the specified list or its * list-iterator does not support the <tt>set</tt> operation. */ public static <T> void fill(List<? super T> list, T obj) { int size = list.size(); if (size < FILL_THRESHOLD || list instanceof RandomAccess) { for ( int i= 0 ; i<size; i++) list.set(i, obj); } else { ListIterator<? super T> itr = list.listIterator(); for ( int i= 0 ; i<size; i++) { itr.next(); itr.set(obj); } } } /** * Copies all of the elements from one list into another. After the * operation, the index of each copied element in the destination list * will be identical to its index in the source list. The destination * list must be at least as long as the source list. If it is longer, the * remaining elements in the destination list are unaffected. <p> * * This method runs in linear time. * * @param <T> the class of the objects in the lists * @param dest The destination list. * @param src The source list. * @throws IndexOutOfBoundsException if the destination list is too small * to contain the entire source List. * @throws UnsupportedOperationException if the destination list's * list-iterator does not support the <tt>set</tt> operation. */ public static <T> void copy(List<? super T> dest, List<? extends T> src) { int srcSize = src.size(); if (srcSize > dest.size()) throw new IndexOutOfBoundsException( "Source does not fit in dest" ); if (srcSize < COPY_THRESHOLD || (src instanceof RandomAccess && dest instanceof RandomAccess)) { for ( int i= 0 ; i<srcSize; i++) dest.set(i, src.get(i)); } else { ListIterator<? super T> di=dest.listIterator(); ListIterator<? extends T> si=src.listIterator(); for ( int i= 0 ; i<srcSize; i++) { di.next(); di.set(si.next()); } } } /** * Returns the minimum element of the given collection, according to the * <i>natural ordering</i> of its elements. All elements in the * collection must implement the <tt>Comparable</tt> interface. * Furthermore, all elements in the collection must be <i>mutually * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and * <tt>e2</tt> in the collection).<p> * * This method iterates over the entire collection, hence it requires * time proportional to the size of the collection. * * @param <T> the class of the objects in the collection * @param coll the collection whose minimum element is to be determined. * @return the minimum element of the given collection, according * to the <i>natural ordering</i> of its elements. * @throws ClassCastException if the collection contains elements that are * not <i>mutually comparable</i> (for example, strings and * integers). * @throws NoSuchElementException if the collection is empty. * @see Comparable */ public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) { Iterator<? extends T> i = coll.iterator(); T candidate = i.next(); while (i.hasNext()) { T next = i.next(); if (next.compareTo(candidate) < 0 ) candidate = next; } return candidate; } /** * Returns the minimum element of the given collection, according to the * order induced by the specified comparator. All elements in the * collection must be <i>mutually comparable</i> by the specified * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and * <tt>e2</tt> in the collection).<p> * * This method iterates over the entire collection, hence it requires * time proportional to the size of the collection. * * @param <T> the class of the objects in the collection * @param coll the collection whose minimum element is to be determined. * @param comp the comparator with which to determine the minimum element. * A <tt>null</tt> value indicates that the elements' <i>natural * ordering</i> should be used. * @return the minimum element of the given collection, according * to the specified comparator. * @throws ClassCastException if the collection contains elements that are * not <i>mutually comparable</i> using the specified comparator. * @throws NoSuchElementException if the collection is empty. * @see Comparable */ @SuppressWarnings ({ "unchecked" , "rawtypes" }) public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) { if (comp== null ) return (T)min((Collection) coll); Iterator<? extends T> i = coll.iterator(); T candidate = i.next(); while (i.hasNext()) { T next = i.next(); if (comp.compare(next, candidate) < 0 ) candidate = next; } return candidate; } /** * Returns the maximum element of the given collection, according to the * <i>natural ordering</i> of its elements. All elements in the * collection must implement the <tt>Comparable</tt> interface. * Furthermore, all elements in the collection must be <i>mutually * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and * <tt>e2</tt> in the collection).<p> * * This method iterates over the entire collection, hence it requires * time proportional to the size of the collection. * * @param <T> the class of the objects in the collection * @param coll the collection whose maximum element is to be determined. * @return the maximum element of the given collection, according * to the <i>natural ordering</i> of its elements. * @throws ClassCastException if the collection contains elements that are * not <i>mutually comparable</i> (for example, strings and * integers). * @throws NoSuchElementException if the collection is empty. * @see Comparable */ public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) { Iterator<? extends T> i = coll.iterator(); T candidate = i.next(); while (i.hasNext()) { T next = i.next(); if (next.compareTo(candidate) > 0 ) candidate = next; } return candidate; } /** * Returns the maximum element of the given collection, according to the * order induced by the specified comparator. All elements in the * collection must be <i>mutually comparable</i> by the specified * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and * <tt>e2</tt> in the collection).<p> * * This method iterates over the entire collection, hence it requires * time proportional to the size of the collection. * * @param <T> the class of the objects in the collection * @param coll the collection whose maximum element is to be determined. * @param comp the comparator with which to determine the maximum element. * A <tt>null</tt> value indicates that the elements' <i>natural * ordering</i> should be used. * @return the maximum element of the given collection, according * to the specified comparator. * @throws ClassCastException if the collection contains elements that are * not <i>mutually comparable</i> using the specified comparator. * @throws NoSuchElementException if the collection is empty. * @see Comparable */ @SuppressWarnings ({ "unchecked" , "rawtypes" }) public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) { if (comp== null ) return (T)max((Collection) coll); Iterator<? extends T> i = coll.iterator(); T candidate = i.next(); while (i.hasNext()) { T next = i.next(); if (comp.compare(next, candidate) > 0 ) candidate = next; } return candidate; } /** * Rotates the elements in the specified list by the specified distance. * After calling this method, the element at index <tt>i</tt> will be * the element previously at index <tt>(i - distance)</tt> mod * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt> * and <tt>list.size()-1</tt>, inclusive. (This method has no effect on * the size of the list.) * * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>. * After invoking <tt>Collections.rotate(list, 1)</tt> (or * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise * <tt>[s, t, a, n, k]</tt>. * * <p>Note that this method can usefully be applied to sublists to * move one or more elements within a list while preserving the * order of the remaining elements. For example, the following idiom * moves the element at index <tt>j</tt> forward to position * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>): * <pre> * Collections.rotate(list.subList(j, k+1), -1); * </pre> * To make this concrete, suppose <tt>list</tt> comprises * <tt>[a, b, c, d, e]</tt>. To move the element at index <tt>1</tt> * (<tt>b</tt>) forward two positions, perform the following invocation: * <pre> * Collections.rotate(l.subList(1, 4), -1); * </pre> * The resulting list is <tt>[a, c, d, b, e]</tt>. * * <p>To move more than one element forward, increase the absolute value * of the rotation distance. To move elements backward, use a positive * shift distance. * * <p>If the specified list is small or implements the {@link * RandomAccess} interface, this implementation exchanges the first * element into the location it should go, and then repeatedly exchanges * the displaced element into the location it should go until a displaced * element is swapped into the first element. If necessary, the process * is repeated on the second and successive elements, until the rotation * is complete. If the specified list is large and doesn't implement the * <tt>RandomAccess</tt> interface, this implementation breaks the * list into two sublist views around index <tt>-distance mod size</tt>. * Then the {@link #reverse(List)} method is invoked on each sublist view, * and finally it is invoked on the entire list. For a more complete * description of both algorithms, see Section 2.3 of Jon Bentley's * <i>Programming Pearls</i> (Addison-Wesley, 1986). * * @param list the list to be rotated. * @param distance the distance to rotate the list. There are no * constraints on this value; it may be zero, negative, or * greater than <tt>list.size()</tt>. * @throws UnsupportedOperationException if the specified list or * its list-iterator does not support the <tt>set</tt> operation. * @since 1.4 */ public static void rotate(List<?> list, int distance) { if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD) rotate1(list, distance); else rotate2(list, distance); } private static <T> void rotate1(List<T> list, int distance) { int size = list.size(); if (size == 0 ) return ; distance = distance % size; if (distance < 0 ) distance += size; if (distance == 0 ) return ; for ( int cycleStart = 0 , nMoved = 0 ; nMoved != size; cycleStart++) { T displaced = list.get(cycleStart); int i = cycleStart; do { i += distance; if (i >= size) i -= size; displaced = list.set(i, displaced); nMoved ++; } while (i != cycleStart); } } private static void rotate2(List<?> list, int distance) { int size = list.size(); if (size == 0 ) return ; int mid = -distance % size; if (mid < 0 ) mid += size; if (mid == 0 ) return ; reverse(list.subList( 0 , mid)); reverse(list.subList(mid, size)); reverse(list); } /** * Replaces all occurrences of one specified value in a list with another. * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt> * in <tt>list</tt> such that * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>. * (This method has no effect on the size of the list.) * * @param <T> the class of the objects in the list * @param list the list in which replacement is to occur. * @param oldVal the old value to be replaced. * @param newVal the new value with which <tt>oldVal</tt> is to be * replaced. * @return <tt>true</tt> if <tt>list</tt> contained one or more elements * <tt>e</tt> such that * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>. * @throws UnsupportedOperationException if the specified list or * its list-iterator does not support the <tt>set</tt> operation. * @since 1.4 */ public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) { boolean result = false ; int size = list.size(); if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) { if (oldVal== null ) { for ( int i= 0 ; i<size; i++) { if (list.get(i)== null ) { list.set(i, newVal); result = true ; } } } else { for ( int i= 0 ; i<size; i++) { if (oldVal.equals(list.get(i))) { list.set(i, newVal); result = true ; } } } } else { ListIterator<T> itr=list.listIterator(); if (oldVal== null ) { for ( int i= 0 ; i<size; i++) { if (itr.next()== null ) { itr.set(newVal); result = true ; } } } else { for ( int i= 0 ; i<size; i++) { if (oldVal.equals(itr.next())) { itr.set(newVal); result = true ; } } } } return result; } /** * Returns the starting position of the first occurrence of the specified * target list within the specified source list, or -1 if there is no * such occurrence. More formally, returns the lowest index <tt>i</tt> * such that {@code source.subList(i, i+target.size()).equals(target)}, * or -1 if there is no such index. (Returns -1 if * {@code target.size() > source.size()}) * * <p>This implementation uses the "brute force" technique of scanning * over the source list, looking for a match with the target at each * location in turn. * * @param source the list in which to search for the first occurrence * of <tt>target</tt>. * @param target the list to search for as a subList of <tt>source</tt>. * @return the starting position of the first occurrence of the specified * target list within the specified source list, or -1 if there * is no such occurrence. * @since 1.4 */ public static int indexOfSubList(List<?> source, List<?> target) { int sourceSize = source.size(); int targetSize = target.size(); int maxCandidate = sourceSize - targetSize; if (sourceSize < INDEXOFSUBLIST_THRESHOLD || (source instanceof RandomAccess&&target instanceof RandomAccess)) { nextCand: for ( int candidate = 0 ; candidate <= maxCandidate; candidate++) { for ( int i= 0 , j=candidate; i<targetSize; i++, j++) if (!eq(target.get(i), source.get(j))) continue nextCand; // Element mismatch, try next cand return candidate; // All elements of candidate matched target } } else { // Iterator version of above algorithm ListIterator<?> si = source.listIterator(); nextCand: for ( int candidate = 0 ; candidate <= maxCandidate; candidate++) { ListIterator<?> ti = target.listIterator(); for ( int i= 0 ; i<targetSize; i++) { if (!eq(ti.next(), si.next())) { // Back up source iterator to next candidate for ( int j= 0 ; j<i; j++) si.previous(); continue nextCand; } } return candidate; } } return - 1 ; // No candidate matched the target } /** * Returns the starting position of the last occurrence of the specified * target list within the specified source list, or -1 if there is no such * occurrence. More formally, returns the highest index <tt>i</tt> * such that {@code source.subList(i, i+target.size()).equals(target)}, * or -1 if there is no such index. (Returns -1 if * {@code target.size() > source.size()}) * * <p>This implementation uses the "brute force" technique of iterating * over the source list, looking for a match with the target at each * location in turn. * * @param source the list in which to search for the last occurrence * of <tt>target</tt>. * @param target the list to search for as a subList of <tt>source</tt>. * @return the starting position of the last occurrence of the specified * target list within the specified source list, or -1 if there * is no such occurrence. * @since 1.4 */ public static int lastIndexOfSubList(List<?> source, List<?> target) { int sourceSize = source.size(); int targetSize = target.size(); int maxCandidate = sourceSize - targetSize; if (sourceSize < INDEXOFSUBLIST_THRESHOLD || source instanceof RandomAccess) { // Index access version nextCand: for ( int candidate = maxCandidate; candidate >= 0 ; candidate--) { for ( int i= 0 , j=candidate; i<targetSize; i++, j++) if (!eq(target.get(i), source.get(j))) continue nextCand; // Element mismatch, try next cand return candidate; // All elements of candidate matched target } } else { // Iterator version of above algorithm if (maxCandidate < 0 ) return - 1 ; ListIterator<?> si = source.listIterator(maxCandidate); nextCand: for ( int candidate = maxCandidate; candidate >= 0 ; candidate--) { ListIterator<?> ti = target.listIterator(); for ( int i= 0 ; i<targetSize; i++) { if (!eq(ti.next(), si.next())) { if (candidate != 0 ) { // Back up source iterator to next candidate for ( int j= 0 ; j<=i+ 1 ; j++) si.previous(); } continue nextCand; } } return candidate; } } return - 1 ; // No candidate matched the target } // Unmodifiable Wrappers /** * Returns an unmodifiable view of the specified collection. This method * allows modules to provide users with "read-only" access to internal * collections. Query operations on the returned collection "read through" * to the specified collection, and attempts to modify the returned * collection, whether direct or via its iterator, result in an * <tt>UnsupportedOperationException</tt>.<p> * * The returned collection does <i>not</i> pass the hashCode and equals * operations through to the backing collection, but relies on * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This * is necessary to preserve the contracts of these operations in the case * that the backing collection is a set or a list.<p> * * The returned collection will be serializable if the specified collection * is serializable. * * @param <T> the class of the objects in the collection * @param c the collection for which an unmodifiable view is to be * returned. * @return an unmodifiable view of the specified collection. */ public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) { return new UnmodifiableCollection<>(c); } /** * @serial include */ static class UnmodifiableCollection<E> implements Collection<E>, Serializable { private static final long serialVersionUID = 1820017752578914078L; final Collection<? extends E> c; UnmodifiableCollection(Collection<? extends E> c) { if (c== null ) throw new NullPointerException(); this .c = c; } public int size() { return c.size();} public boolean isEmpty() { return c.isEmpty();} public boolean contains(Object o) { return c.contains(o);} public Object[] toArray() { return c.toArray();} public <T> T[] toArray(T[] a) { return c.toArray(a);} public String toString() { return c.toString();} public Iterator<E> iterator() { return new Iterator<E>() { private final Iterator<? extends E> i = c.iterator(); public boolean hasNext() { return i.hasNext();} public E next() { return i.next();} public void remove() { throw new UnsupportedOperationException(); } @Override public void forEachRemaining(Consumer<? super E> action) { // Use backing collection version i.forEachRemaining(action); } }; } public boolean add(E e) { throw new UnsupportedOperationException(); } public boolean remove(Object o) { throw new UnsupportedOperationException(); } public boolean containsAll(Collection<?> coll) { return c.containsAll(coll); } public boolean addAll(Collection<? extends E> coll) { throw new UnsupportedOperationException(); } public boolean removeAll(Collection<?> coll) { throw new UnsupportedOperationException(); } public boolean retainAll(Collection<?> coll) { throw new UnsupportedOperationException(); } public void clear() { throw new UnsupportedOperationException(); } // Override default methods in Collection @Override public void forEach(Consumer<? super E> action) { c.forEach(action); } @Override public boolean removeIf(Predicate<? super E> filter) { throw new UnsupportedOperationException(); } @SuppressWarnings ( "unchecked" ) @Override public Spliterator<E> spliterator() { return (Spliterator<E>)c.spliterator(); } @SuppressWarnings ( "unchecked" ) @Override public Stream<E> stream() { return (Stream<E>)c.stream(); } @SuppressWarnings ( "unchecked" ) @Override public Stream<E> parallelStream() { return (Stream<E>)c.parallelStream(); } } /** * Returns an unmodifiable view of the specified set. This method allows * modules to provide users with "read-only" access to internal sets. * Query operations on the returned set "read through" to the specified * set, and attempts to modify the returned set, whether direct or via its * iterator, result in an <tt>UnsupportedOperationException</tt>.<p> * * The returned set will be serializable if the specified set * is serializable. * * @param <T> the class of the objects in the set * @param s the set for which an unmodifiable view is to be returned. * @return an unmodifiable view of the specified set. */ public static <T> Set<T> unmodifiableSet(Set<? extends T> s) { return new UnmodifiableSet<>(s); } /** * @serial include */ static class UnmodifiableSet<E> extends UnmodifiableCollection<E> implements Set<E>, Serializable { private static final long serialVersionUID = -9215047833775013803L; UnmodifiableSet(Set<? extends E> s) { super (s);} public boolean equals(Object o) { return o == this || c.equals(o);} public int hashCode() { return c.hashCode();} } /** * Returns an unmodifiable view of the specified sorted set. This method * allows modules to provide users with "read-only" access to internal * sorted sets. Query operations on the returned sorted set "read * through" to the specified sorted set. Attempts to modify the returned * sorted set, whether direct, via its iterator, or via its * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in * an <tt>UnsupportedOperationException</tt>.<p> * * The returned sorted set will be serializable if the specified sorted set * is serializable. * * @param <T> the class of the objects in the set * @param s the sorted set for which an unmodifiable view is to be * returned. * @return an unmodifiable view of the specified sorted set. */ public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) { return new UnmodifiableSortedSet<>(s); } /** * @serial include */ static class UnmodifiableSortedSet<E> extends UnmodifiableSet<E> implements SortedSet<E>, Serializable { private static final long serialVersionUID = -4929149591599911165L; private final SortedSet<E> ss; UnmodifiableSortedSet(SortedSet<E> s) { super (s); ss = s;} public Comparator<? super E> comparator() { return ss.comparator();} public SortedSet<E> subSet(E fromElement, E toElement) { return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement)); } public SortedSet<E> headSet(E toElement) { return new UnmodifiableSortedSet<>(ss.headSet(toElement)); } public SortedSet<E> tailSet(E fromElement) { return new UnmodifiableSortedSet<>(ss.tailSet(fromElement)); } public E first() { return ss.first();} public E last() { return ss.last();} } /** * Returns an unmodifiable view of the specified navigable set. This method * allows modules to provide users with "read-only" access to internal * navigable sets. Query operations on the returned navigable set "read * through" to the specified navigable set. Attempts to modify the returned * navigable set, whether direct, via its iterator, or via its * {@code subSet}, {@code headSet}, or {@code tailSet} views, result in * an {@code UnsupportedOperationException}.<p> * * The returned navigable set will be serializable if the specified * navigable set is serializable. * * @param <T> the class of the objects in the set * @param s the navigable set for which an unmodifiable view is to be * returned * @return an unmodifiable view of the specified navigable set * @since 1.8 */ public static <T> NavigableSet<T> unmodifiableNavigableSet(NavigableSet<T> s) { return new UnmodifiableNavigableSet<>(s); } /** * Wraps a navigable set and disables all of the mutative operations. * * @param <E> type of elements * @serial include */ static class UnmodifiableNavigableSet<E> extends UnmodifiableSortedSet<E> implements NavigableSet<E>, Serializable { private static final long serialVersionUID = -6027448201786391929L; /** * A singleton empty unmodifiable navigable set used for * {@link #emptyNavigableSet()}. * * @param <E> type of elements, if there were any, and bounds */ private static class EmptyNavigableSet<E> extends UnmodifiableNavigableSet<E> implements Serializable { private static final long serialVersionUID = -6291252904449939134L; public EmptyNavigableSet() { super ( new TreeSet<E>()); } private Object readResolve() { return EMPTY_NAVIGABLE_SET; } } @SuppressWarnings ( "rawtypes" ) private static final NavigableSet<?> EMPTY_NAVIGABLE_SET = new EmptyNavigableSet<>(); /** * The instance we are protecting. */ private final NavigableSet<E> ns; UnmodifiableNavigableSet(NavigableSet<E> s) { super (s); ns = s;} public E lower(E e) { return ns.lower(e); } public E floor(E e) { return ns.floor(e); } public E ceiling(E e) { return ns.ceiling(e); } public E higher(E e) { return ns.higher(e); } public E pollFirst() { throw new UnsupportedOperationException(); } public E pollLast() { throw new UnsupportedOperationException(); } public NavigableSet<E> descendingSet() { return new UnmodifiableNavigableSet<>(ns.descendingSet()); } public Iterator<E> descendingIterator() { return descendingSet().iterator(); } public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { return new UnmodifiableNavigableSet<>( ns.subSet(fromElement, fromInclusive, toElement, toInclusive)); } public NavigableSet<E> headSet(E toElement, boolean inclusive) { return new UnmodifiableNavigableSet<>( ns.headSet(toElement, inclusive)); } public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { return new UnmodifiableNavigableSet<>( ns.tailSet(fromElement, inclusive)); } } /** * Returns an unmodifiable view of the specified list. This method allows * modules to provide users with "read-only" access to internal * lists. Query operations on the returned list "read through" to the * specified list, and attempts to modify the returned list, whether * direct or via its iterator, result in an * <tt>UnsupportedOperationException</tt>.<p> * * The returned list will be serializable if the specified list * is serializable. Similarly, the returned list will implement * {@link RandomAccess} if the specified list does. * * @param <T> the class of the objects in the list * @param list the list for which an unmodifiable view is to be returned. * @return an unmodifiable view of the specified list. */ public static <T> List<T> unmodifiableList(List<? extends T> list) { return (list instanceof RandomAccess ? new UnmodifiableRandomAccessList<>(list) : new UnmodifiableList<>(list)); } /** * @serial include */ static class UnmodifiableList<E> extends UnmodifiableCollection<E> implements List<E> { private static final long serialVersionUID = -283967356065247728L; final List<? extends E> list; UnmodifiableList(List<? extends E> list) { super (list); this .list = list; } public boolean equals(Object o) { return o == this || list.equals(o);} public int hashCode() { return list.hashCode();} public E get( int index) { return list.get(index);} public E set( int index, E element) { throw new UnsupportedOperationException(); } public void add( int index, E element) { throw new UnsupportedOperationException(); } public E remove( int index) { throw new UnsupportedOperationException(); } public int indexOf(Object o) { return list.indexOf(o);} public int lastIndexOf(Object o) { return list.lastIndexOf(o);} public boolean addAll( int index, Collection<? extends E> c) { throw new UnsupportedOperationException(); } @Override public void replaceAll(UnaryOperator<E> operator) { throw new UnsupportedOperationException(); } @Override public void sort(Comparator<? super E> c) { throw new UnsupportedOperationException(); } public ListIterator<E> listIterator() { return listIterator( 0 );} public ListIterator<E> listIterator( final int index) { return new ListIterator<E>() { private final ListIterator<? extends E> i = list.listIterator(index); public boolean hasNext() { return i.hasNext();} public E next() { return i.next();} public boolean hasPrevious() { return i.hasPrevious();} public E previous() { return i.previous();} public int nextIndex() { return i.nextIndex();} public int previousIndex() { return i.previousIndex();} public void remove() { throw new UnsupportedOperationException(); } public void set(E e) { throw new UnsupportedOperationException(); } public void add(E e) { throw new UnsupportedOperationException(); } @Override public void forEachRemaining(Consumer<? super E> action) { i.forEachRemaining(action); } }; } public List<E> subList( int fromIndex, int toIndex) { return new UnmodifiableList<>(list.subList(fromIndex, toIndex)); } /** * UnmodifiableRandomAccessList instances are serialized as * UnmodifiableList instances to allow them to be deserialized * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList). * This method inverts the transformation. As a beneficial * side-effect, it also grafts the RandomAccess marker onto * UnmodifiableList instances that were serialized in pre-1.4 JREs. * * Note: Unfortunately, UnmodifiableRandomAccessList instances * serialized in 1.4.1 and deserialized in 1.4 will become * UnmodifiableList instances, as this method was missing in 1.4. */ private Object readResolve() { return (list instanceof RandomAccess ? new UnmodifiableRandomAccessList<>(list) : this ); } } /** * @serial include */ static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E> implements RandomAccess { UnmodifiableRandomAccessList(List<? extends E> list) { super (list); } public List<E> subList( int fromIndex, int toIndex) { return new UnmodifiableRandomAccessList<>( list.subList(fromIndex, toIndex)); } private static final long serialVersionUID = -2542308836966382001L; /** * Allows instances to be deserialized in pre-1.4 JREs (which do * not have UnmodifiableRandomAccessList). UnmodifiableList has * a readResolve method that inverts this transformation upon * deserialization. */ private Object writeReplace() { return new UnmodifiableList<>(list); } } /** * Returns an unmodifiable view of the specified map. This method * allows modules to provide users with "read-only" access to internal * maps. Query operations on the returned map "read through" * to the specified map, and attempts to modify the returned * map, whether direct or via its collection views, result in an * <tt>UnsupportedOperationException</tt>.<p> * * The returned map will be serializable if the specified map * is serializable. * * @param <K> the class of the map keys * @param <V> the class of the map values * @param m the map for which an unmodifiable view is to be returned. * @return an unmodifiable view of the specified map. */ public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) { return new UnmodifiableMap<>(m); } /** * @serial include */ private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable { private static final long serialVersionUID = -1034234728574286014L; private final Map<? extends K, ? extends V> m; UnmodifiableMap(Map<? extends K, ? extends V> m) { if (m== null ) throw new NullPointerException(); this .m = m; } public int size() { return m.size();} public boolean isEmpty() { return m.isEmpty();} public boolean containsKey(Object key) { return m.containsKey(key);} public boolean containsValue(Object val) { return m.containsValue(val);} public V get(Object key) { return m.get(key);} public V put(K key, V value) { throw new UnsupportedOperationException(); } public V remove(Object key) { throw new UnsupportedOperationException(); } public void putAll(Map<? extends K, ? extends V> m) { throw new UnsupportedOperationException(); } public void clear() { throw new UnsupportedOperationException(); } private transient Set<K> keySet; private transient Set<Map.Entry<K,V>> entrySet; private transient Collection<V> values; public Set<K> keySet() { if (keySet== null ) keySet = unmodifiableSet(m.keySet()); return keySet; } public Set<Map.Entry<K,V>> entrySet() { if (entrySet== null ) entrySet = new UnmodifiableEntrySet<>(m.entrySet()); return entrySet; } public Collection<V> values() { if (values== null ) values = unmodifiableCollection(m.values()); return values; } public boolean equals(Object o) { return o == this || m.equals(o);} public int hashCode() { return m.hashCode();} public String toString() { return m.toString();} // Override default methods in Map @Override @SuppressWarnings ( "unchecked" ) public V getOrDefault(Object k, V defaultValue) { // Safe cast as we don't change the value return ((Map<K, V>)m).getOrDefault(k, defaultValue); } @Override public void forEach(BiConsumer<? super K, ? super V> action) { m.forEach(action); } @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { throw new UnsupportedOperationException(); } @Override public V putIfAbsent(K key, V value) { throw new UnsupportedOperationException(); } @Override public boolean remove(Object key, Object value) { throw new UnsupportedOperationException(); } @Override public boolean replace(K key, V oldValue, V newValue) { throw new UnsupportedOperationException(); } @Override public V replace(K key, V value) { throw new UnsupportedOperationException(); } @Override public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { throw new UnsupportedOperationException(); } @Override public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { throw new UnsupportedOperationException(); } @Override public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { throw new UnsupportedOperationException(); } @Override public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { throw new UnsupportedOperationException(); } /** * We need this class in addition to UnmodifiableSet as * Map.Entries themselves permit modification of the backing Map * via their setValue operation. This class is subtle: there are * many possible attacks that must be thwarted. * * @serial include */ static class UnmodifiableEntrySet<K,V> extends UnmodifiableSet<Map.Entry<K,V>> { private static final long serialVersionUID = 7854390611657943733L; @SuppressWarnings ({ "unchecked" , "rawtypes" }) UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) { // Need to cast to raw in order to work around a limitation in the type system super ((Set)s); } static <K, V> Consumer<Map.Entry<K, V>> entryConsumer(Consumer<? super Entry<K, V>> action) { return e -> action.accept( new UnmodifiableEntry<>(e)); } public void forEach(Consumer<? super Entry<K, V>> action) { Objects.requireNonNull(action); c.forEach(entryConsumer(action)); } static final class UnmodifiableEntrySetSpliterator<K, V> implements Spliterator<Entry<K,V>> { final Spliterator<Map.Entry<K, V>> s; UnmodifiableEntrySetSpliterator(Spliterator<Entry<K, V>> s) { this .s = s; } @Override public boolean tryAdvance(Consumer<? super Entry<K, V>> action) { Objects.requireNonNull(action); return s.tryAdvance(entryConsumer(action)); } @Override public void forEachRemaining(Consumer<? super Entry<K, V>> action) { Objects.requireNonNull(action); s.forEachRemaining(entryConsumer(action)); } @Override public Spliterator<Entry<K, V>> trySplit() { Spliterator<Entry<K, V>> split = s.trySplit(); return split == null ? null : new UnmodifiableEntrySetSpliterator<>(split); } @Override public long estimateSize() { return s.estimateSize(); } @Override public long getExactSizeIfKnown() { return s.getExactSizeIfKnown(); } @Override public int characteristics() { return s.characteristics(); } @Override public boolean hasCharacteristics( int characteristics) { return s.hasCharacteristics(characteristics); } @Override public Comparator<? super Entry<K, V>> getComparator() { return s.getComparator(); } } @SuppressWarnings ( "unchecked" ) public Spliterator<Entry<K,V>> spliterator() { return new UnmodifiableEntrySetSpliterator<>( (Spliterator<Map.Entry<K, V>>) c.spliterator()); } @Override public Stream<Entry<K,V>> stream() { return StreamSupport.stream(spliterator(), false ); } @Override public Stream<Entry<K,V>> parallelStream() { return StreamSupport.stream(spliterator(), true ); } public Iterator<Map.Entry<K,V>> iterator() { return new Iterator<Map.Entry<K,V>>() { private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator(); public boolean hasNext() { return i.hasNext(); } public Map.Entry<K,V> next() { return new UnmodifiableEntry<>(i.next()); } public void remove() { throw new UnsupportedOperationException(); } }; } @SuppressWarnings ( "unchecked" ) public Object[] toArray() { Object[] a = c.toArray(); for ( int i= 0 ; i<a.length; i++) a[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)a[i]); return a; } @SuppressWarnings ( "unchecked" ) public <T> T[] toArray(T[] a) { // We don't pass a to c.toArray, to avoid window of // vulnerability wherein an unscrupulous multithreaded client // could get his hands on raw (unwrapped) Entries from c. Object[] arr = c.toArray(a.length== 0 ? a : Arrays.copyOf(a, 0 )); for ( int i= 0 ; i<arr.length; i++) arr[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)arr[i]); if (arr.length > a.length) return (T[])arr; System.arraycopy(arr, 0 , a, 0 , arr.length); if (a.length > arr.length) a[arr.length] = null ; return a; } /** * This method is overridden to protect the backing set against * an object with a nefarious equals function that senses * that the equality-candidate is Map.Entry and calls its * setValue method. */ public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false ; return c.contains( new UnmodifiableEntry<>((Map.Entry<?,?>) o)); } /** * The next two methods are overridden to protect against * an unscrupulous List whose contains(Object o) method senses * when o is a Map.Entry, and calls o.setValue. */ public boolean containsAll(Collection<?> coll) { for (Object e : coll) { if (!contains(e)) // Invokes safe contains() above return false ; } return true ; } public boolean equals(Object o) { if (o == this ) return true ; if (!(o instanceof Set)) return false ; Set<?> s = (Set<?>) o; if (s.size() != c.size()) return false ; return containsAll(s); // Invokes safe containsAll() above } /** * This "wrapper class" serves two purposes: it prevents * the client from modifying the backing Map, by short-circuiting * the setValue method, and it protects the backing Map against * an ill-behaved Map.Entry that attempts to modify another * Map Entry when asked to perform an equality check. */ private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> { private Map.Entry<? extends K, ? extends V> e; UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) { this .e = Objects.requireNonNull(e);} public K getKey() { return e.getKey();} public V getValue() { return e.getValue();} public V setValue(V value) { throw new UnsupportedOperationException(); } public int hashCode() { return e.hashCode();} public boolean equals(Object o) { if ( this == o) return true ; if (!(o instanceof Map.Entry)) return false ; Map.Entry<?,?> t = (Map.Entry<?,?>)o; return eq(e.getKey(), t.getKey()) && eq(e.getValue(), t.getValue()); } public String toString() { return e.toString();} } } } /** * Returns an unmodifiable view of the specified sorted map. This method * allows modules to provide users with "read-only" access to internal * sorted maps. Query operations on the returned sorted map "read through" * to the specified sorted map. Attempts to modify the returned * sorted map, whether direct, via its collection views, or via its * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in * an <tt>UnsupportedOperationException</tt>.<p> * * The returned sorted map will be serializable if the specified sorted map * is serializable. * * @param <K> the class of the map keys * @param <V> the class of the map values * @param m the sorted map for which an unmodifiable view is to be * returned. * @return an unmodifiable view of the specified sorted map. */ public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) { return new UnmodifiableSortedMap<>(m); } /** * @serial include */ static class UnmodifiableSortedMap<K,V> extends UnmodifiableMap<K,V> implements SortedMap<K,V>, Serializable { private static final long serialVersionUID = -8806743815996713206L; private final SortedMap<K, ? extends V> sm; UnmodifiableSortedMap(SortedMap<K, ? extends V> m) { super (m); sm = m; } public Comparator<? super K> comparator() { return sm.comparator(); } public SortedMap<K,V> subMap(K fromKey, K toKey) { return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey)); } public SortedMap<K,V> headMap(K toKey) { return new UnmodifiableSortedMap<>(sm.headMap(toKey)); } public SortedMap<K,V> tailMap(K fromKey) { return new UnmodifiableSortedMap<>(sm.tailMap(fromKey)); } public K firstKey() { return sm.firstKey(); } public K lastKey() { return sm.lastKey(); } } /** * Returns an unmodifiable view of the specified navigable map. This method * allows modules to provide users with "read-only" access to internal * navigable maps. Query operations on the returned navigable map "read * through" to the specified navigable map. Attempts to modify the returned * navigable map, whether direct, via its collection views, or via its * {@code subMap}, {@code headMap}, or {@code tailMap} views, result in * an {@code UnsupportedOperationException}.<p> * * The returned navigable map will be serializable if the specified * navigable map is serializable. * * @param <K> the class of the map keys * @param <V> the class of the map values * @param m the navigable map for which an unmodifiable view is to be * returned * @return an unmodifiable view of the specified navigable map * @since 1.8 */ public static <K,V> NavigableMap<K,V> unmodifiableNavigableMap(NavigableMap<K, ? extends V> m) { return new UnmodifiableNavigableMap<>(m); } /** * @serial include */ static class UnmodifiableNavigableMap<K,V> extends UnmodifiableSortedMap<K,V> implements NavigableMap<K,V>, Serializable { private static final long serialVersionUID = -4858195264774772197L; /** * A class for the {@link EMPTY_NAVIGABLE_MAP} which needs readResolve * to preserve singleton property. * * @param <K> type of keys, if there were any, and of bounds * @param <V> type of values, if there were any */ private static class EmptyNavigableMap<K,V> extends UnmodifiableNavigableMap<K,V> implements Serializable { private static final long serialVersionUID = -2239321462712562324L; EmptyNavigableMap() { super ( new TreeMap<K,V>()); } @Override public NavigableSet<K> navigableKeySet() { return emptyNavigableSet(); } private Object readResolve() { return EMPTY_NAVIGABLE_MAP; } } /** * Singleton for {@link emptyNavigableMap()} which is also immutable. */ private static final EmptyNavigableMap<?,?> EMPTY_NAVIGABLE_MAP = new EmptyNavigableMap<>(); /** * The instance we wrap and protect. */ private final NavigableMap<K, ? extends V> nm; UnmodifiableNavigableMap(NavigableMap<K, ? extends V> m) { super (m); nm = m;} public K lowerKey(K key) { return nm.lowerKey(key); } public K floorKey(K key) { return nm.floorKey(key); } public K ceilingKey(K key) { return nm.ceilingKey(key); } public K higherKey(K key) { return nm.higherKey(key); } @SuppressWarnings ( "unchecked" ) public Entry<K, V> lowerEntry(K key) { Entry<K,V> lower = (Entry<K, V>) nm.lowerEntry(key); return ( null != lower) ? new UnmodifiableEntrySet.UnmodifiableEntry<>(lower) : null ; } @SuppressWarnings ( "unchecked" ) public Entry<K, V> floorEntry(K key) { Entry<K,V> floor = (Entry<K, V>) nm.floorEntry(key); return ( null != floor) ? new UnmodifiableEntrySet.UnmodifiableEntry<>(floor) : null ; } @SuppressWarnings ( "unchecked" ) public Entry<K, V> ceilingEntry(K key) { Entry<K,V> ceiling = (Entry<K, V>) nm.ceilingEntry(key); return ( null != ceiling) ? new UnmodifiableEntrySet.UnmodifiableEntry<>(ceiling) : null ; } @SuppressWarnings ( "unchecked" ) public Entry<K, V> higherEntry(K key) { Entry<K,V> higher = (Entry<K, V>) nm.higherEntry(key); return ( null != higher) ? new UnmodifiableEntrySet.UnmodifiableEntry<>(higher) : null ; } @SuppressWarnings ( "unchecked" ) public Entry<K, V> firstEntry() { Entry<K,V> first = (Entry<K, V>) nm.firstEntry(); return ( null != first) ? new UnmodifiableEntrySet.UnmodifiableEntry<>(first) : null ; } @SuppressWarnings ( "unchecked" ) public Entry<K, V> lastEntry() { Entry<K,V> last = (Entry<K, V>) nm.lastEntry(); return ( null != last) ? new UnmodifiableEntrySet.UnmodifiableEntry<>(last) : null ; } public Entry<K, V> pollFirstEntry() { throw new UnsupportedOperationException(); } public Entry<K, V> pollLastEntry() { throw new UnsupportedOperationException(); } public NavigableMap<K, V> descendingMap() { return unmodifiableNavigableMap(nm.descendingMap()); } public NavigableSet<K> navigableKeySet() { return unmodifiableNavigableSet(nm.navigableKeySet()); } public NavigableSet<K> descendingKeySet() { return unmodifiableNavigableSet(nm.descendingKeySet()); } public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { return unmodifiableNavigableMap( nm.subMap(fromKey, fromInclusive, toKey, toInclusive)); } public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { return unmodifiableNavigableMap(nm.headMap(toKey, inclusive)); } public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { return unmodifiableNavigableMap(nm.tailMap(fromKey, inclusive)); } } // Synch Wrappers /** * Returns a synchronized (thread-safe) collection backed by the specified * collection. In order to guarantee serial access, it is critical that * <strong>all</strong> access to the backing collection is accomplished * through the returned collection.<p> * * It is imperative that the user manually synchronize on the returned * collection when traversing it via {@link Iterator}, {@link Spliterator} * or {@link Stream}: * <pre> * Collection c = Collections.synchronizedCollection(myCollection); * ... * synchronized (c) { * Iterator i = c.iterator(); // Must be in the synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned collection does <i>not</i> pass the {@code hashCode} * and {@code equals} operations through to the backing collection, but * relies on {@code Object}'s equals and hashCode methods. This is * necessary to preserve the contracts of these operations in the case * that the backing collection is a set or a list.<p> * * The returned collection will be serializable if the specified collection * is serializable. * * @param <T> the class of the objects in the collection * @param c the collection to be "wrapped" in a synchronized collection. * @return a synchronized view of the specified collection. */ public static <T> Collection<T> synchronizedCollection(Collection<T> c) { return new SynchronizedCollection<>(c); } static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) { return new SynchronizedCollection<>(c, mutex); } /** * @serial include */ static class SynchronizedCollection<E> implements Collection<E>, Serializable { private static final long serialVersionUID = 3053995032091335093L; final Collection<E> c; // Backing Collection final Object mutex; // Object on which to synchronize SynchronizedCollection(Collection<E> c) { this .c = Objects.requireNonNull(c); mutex = this ; } SynchronizedCollection(Collection<E> c, Object mutex) { this .c = Objects.requireNonNull(c); this .mutex = Objects.requireNonNull(mutex); } public int size() { synchronized (mutex) { return c.size();} } public boolean isEmpty() { synchronized (mutex) { return c.isEmpty();} } public boolean contains(Object o) { synchronized (mutex) { return c.contains(o);} } public Object[] toArray() { synchronized (mutex) { return c.toArray();} } public <T> T[] toArray(T[] a) { synchronized (mutex) { return c.toArray(a);} } public Iterator<E> iterator() { return c.iterator(); // Must be manually synched by user! } public boolean add(E e) { synchronized (mutex) { return c.add(e);} } public boolean remove(Object o) { synchronized (mutex) { return c.remove(o);} } public boolean containsAll(Collection<?> coll) { synchronized (mutex) { return c.containsAll(coll);} } public boolean addAll(Collection<? extends E> coll) { synchronized (mutex) { return c.addAll(coll);} } public boolean removeAll(Collection<?> coll) { synchronized (mutex) { return c.removeAll(coll);} } public boolean retainAll(Collection<?> coll) { synchronized (mutex) { return c.retainAll(coll);} } public void clear() { synchronized (mutex) {c.clear();} } public String toString() { synchronized (mutex) { return c.toString();} } // Override default methods in Collection @Override public void forEach(Consumer<? super E> consumer) { synchronized (mutex) {c.forEach(consumer);} } @Override public boolean removeIf(Predicate<? super E> filter) { synchronized (mutex) { return c.removeIf(filter);} } @Override public Spliterator<E> spliterator() { return c.spliterator(); // Must be manually synched by user! } @Override public Stream<E> stream() { return c.stream(); // Must be manually synched by user! } @Override public Stream<E> parallelStream() { return c.parallelStream(); // Must be manually synched by user! } private void writeObject(ObjectOutputStream s) throws IOException { synchronized (mutex) {s.defaultWriteObject();} } } /** * Returns a synchronized (thread-safe) set backed by the specified * set. In order to guarantee serial access, it is critical that * <strong>all</strong> access to the backing set is accomplished * through the returned set.<p> * * It is imperative that the user manually synchronize on the returned * set when iterating over it: * <pre> * Set s = Collections.synchronizedSet(new HashSet()); * ... * synchronized (s) { * Iterator i = s.iterator(); // Must be in the synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned set will be serializable if the specified set is * serializable. * * @param <T> the class of the objects in the set * @param s the set to be "wrapped" in a synchronized set. * @return a synchronized view of the specified set. */ public static <T> Set<T> synchronizedSet(Set<T> s) { return new SynchronizedSet<>(s); } static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) { return new SynchronizedSet<>(s, mutex); } /** * @serial include */ static class SynchronizedSet<E> extends SynchronizedCollection<E> implements Set<E> { private static final long serialVersionUID = 487447009682186044L; SynchronizedSet(Set<E> s) { super (s); } SynchronizedSet(Set<E> s, Object mutex) { super (s, mutex); } public boolean equals(Object o) { if ( this == o) return true ; synchronized (mutex) { return c.equals(o);} } public int hashCode() { synchronized (mutex) { return c.hashCode();} } } /** * Returns a synchronized (thread-safe) sorted set backed by the specified * sorted set. In order to guarantee serial access, it is critical that * <strong>all</strong> access to the backing sorted set is accomplished * through the returned sorted set (or its views).<p> * * It is imperative that the user manually synchronize on the returned * sorted set when iterating over it or any of its <tt>subSet</tt>, * <tt>headSet</tt>, or <tt>tailSet</tt> views. * <pre> * SortedSet s = Collections.synchronizedSortedSet(new TreeSet()); * ... * synchronized (s) { * Iterator i = s.iterator(); // Must be in the synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * or: * <pre> * SortedSet s = Collections.synchronizedSortedSet(new TreeSet()); * SortedSet s2 = s.headSet(foo); * ... * synchronized (s) { // Note: s, not s2!!! * Iterator i = s2.iterator(); // Must be in the synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned sorted set will be serializable if the specified * sorted set is serializable. * * @param <T> the class of the objects in the set * @param s the sorted set to be "wrapped" in a synchronized sorted set. * @return a synchronized view of the specified sorted set. */ public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) { return new SynchronizedSortedSet<>(s); } /** * @serial include */ static class SynchronizedSortedSet<E> extends SynchronizedSet<E> implements SortedSet<E> { private static final long serialVersionUID = 8695801310862127406L; private final SortedSet<E> ss; SynchronizedSortedSet(SortedSet<E> s) { super (s); ss = s; } SynchronizedSortedSet(SortedSet<E> s, Object mutex) { super (s, mutex); ss = s; } public Comparator<? super E> comparator() { synchronized (mutex) { return ss.comparator();} } public SortedSet<E> subSet(E fromElement, E toElement) { synchronized (mutex) { return new SynchronizedSortedSet<>( ss.subSet(fromElement, toElement), mutex); } } public SortedSet<E> headSet(E toElement) { synchronized (mutex) { return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex); } } public SortedSet<E> tailSet(E fromElement) { synchronized (mutex) { return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex); } } public E first() { synchronized (mutex) { return ss.first();} } public E last() { synchronized (mutex) { return ss.last();} } } /** * Returns a synchronized (thread-safe) navigable set backed by the * specified navigable set. In order to guarantee serial access, it is * critical that <strong>all</strong> access to the backing navigable set is * accomplished through the returned navigable set (or its views).<p> * * It is imperative that the user manually synchronize on the returned * navigable set when iterating over it or any of its {@code subSet}, * {@code headSet}, or {@code tailSet} views. * <pre> * NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet()); * ... * synchronized (s) { * Iterator i = s.iterator(); // Must be in the synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * or: * <pre> * NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet()); * NavigableSet s2 = s.headSet(foo, true); * ... * synchronized (s) { // Note: s, not s2!!! * Iterator i = s2.iterator(); // Must be in the synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned navigable set will be serializable if the specified * navigable set is serializable. * * @param <T> the class of the objects in the set * @param s the navigable set to be "wrapped" in a synchronized navigable * set * @return a synchronized view of the specified navigable set * @since 1.8 */ public static <T> NavigableSet<T> synchronizedNavigableSet(NavigableSet<T> s) { return new SynchronizedNavigableSet<>(s); } /** * @serial include */ static class SynchronizedNavigableSet<E> extends SynchronizedSortedSet<E> implements NavigableSet<E> { private static final long serialVersionUID = -5505529816273629798L; private final NavigableSet<E> ns; SynchronizedNavigableSet(NavigableSet<E> s) { super (s); ns = s; } SynchronizedNavigableSet(NavigableSet<E> s, Object mutex) { super (s, mutex); ns = s; } public E lower(E e) { synchronized (mutex) { return ns.lower(e);} } public E floor(E e) { synchronized (mutex) { return ns.floor(e);} } public E ceiling(E e) { synchronized (mutex) { return ns.ceiling(e);} } public E higher(E e) { synchronized (mutex) { return ns.higher(e);} } public E pollFirst() { synchronized (mutex) { return ns.pollFirst();} } public E pollLast() { synchronized (mutex) { return ns.pollLast();} } public NavigableSet<E> descendingSet() { synchronized (mutex) { return new SynchronizedNavigableSet<>(ns.descendingSet(), mutex); } } public Iterator<E> descendingIterator() { synchronized (mutex) { return descendingSet().iterator(); } } public NavigableSet<E> subSet(E fromElement, E toElement) { synchronized (mutex) { return new SynchronizedNavigableSet<>(ns.subSet(fromElement, true , toElement, false ), mutex); } } public NavigableSet<E> headSet(E toElement) { synchronized (mutex) { return new SynchronizedNavigableSet<>(ns.headSet(toElement, false ), mutex); } } public NavigableSet<E> tailSet(E fromElement) { synchronized (mutex) { return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, true ), mutex); } } public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { synchronized (mutex) { return new SynchronizedNavigableSet<>(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), mutex); } } public NavigableSet<E> headSet(E toElement, boolean inclusive) { synchronized (mutex) { return new SynchronizedNavigableSet<>(ns.headSet(toElement, inclusive), mutex); } } public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { synchronized (mutex) { return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, inclusive), mutex); } } } /** * Returns a synchronized (thread-safe) list backed by the specified * list. In order to guarantee serial access, it is critical that * <strong>all</strong> access to the backing list is accomplished * through the returned list.<p> * * It is imperative that the user manually synchronize on the returned * list when iterating over it: * <pre> * List list = Collections.synchronizedList(new ArrayList()); * ... * synchronized (list) { * Iterator i = list.iterator(); // Must be in synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned list will be serializable if the specified list is * serializable. * * @param <T> the class of the objects in the list * @param list the list to be "wrapped" in a synchronized list. * @return a synchronized view of the specified list. */ public static <T> List<T> synchronizedList(List<T> list) { return (list instanceof RandomAccess ? new SynchronizedRandomAccessList<>(list) : new SynchronizedList<>(list)); } static <T> List<T> synchronizedList(List<T> list, Object mutex) { return (list instanceof RandomAccess ? new SynchronizedRandomAccessList<>(list, mutex) : new SynchronizedList<>(list, mutex)); } /** * @serial include */ static class SynchronizedList<E> extends SynchronizedCollection<E> implements List<E> { private static final long serialVersionUID = -7754090372962971524L; final List<E> list; SynchronizedList(List<E> list) { super (list); this .list = list; } SynchronizedList(List<E> list, Object mutex) { super (list, mutex); this .list = list; } public boolean equals(Object o) { if ( this == o) return true ; synchronized (mutex) { return list.equals(o);} } public int hashCode() { synchronized (mutex) { return list.hashCode();} } public E get( int index) { synchronized (mutex) { return list.get(index);} } public E set( int index, E element) { synchronized (mutex) { return list.set(index, element);} } public void add( int index, E element) { synchronized (mutex) {list.add(index, element);} } public E remove( int index) { synchronized (mutex) { return list.remove(index);} } public int indexOf(Object o) { synchronized (mutex) { return list.indexOf(o);} } public int lastIndexOf(Object o) { synchronized (mutex) { return list.lastIndexOf(o);} } public boolean addAll( int index, Collection<? extends E> c) { synchronized (mutex) { return list.addAll(index, c);} } public ListIterator<E> listIterator() { return list.listIterator(); // Must be manually synched by user } public ListIterator<E> listIterator( int index) { return list.listIterator(index); // Must be manually synched by user } public List<E> subList( int fromIndex, int toIndex) { synchronized (mutex) { return new SynchronizedList<>(list.subList(fromIndex, toIndex), mutex); } } @Override public void replaceAll(UnaryOperator<E> operator) { synchronized (mutex) {list.replaceAll(operator);} } @Override public void sort(Comparator<? super E> c) { synchronized (mutex) {list.sort(c);} } /** * SynchronizedRandomAccessList instances are serialized as * SynchronizedList instances to allow them to be deserialized * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList). * This method inverts the transformation. As a beneficial * side-effect, it also grafts the RandomAccess marker onto * SynchronizedList instances that were serialized in pre-1.4 JREs. * * Note: Unfortunately, SynchronizedRandomAccessList instances * serialized in 1.4.1 and deserialized in 1.4 will become * SynchronizedList instances, as this method was missing in 1.4. */ private Object readResolve() { return (list instanceof RandomAccess ? new SynchronizedRandomAccessList<>(list) : this ); } } /** * @serial include */ static class SynchronizedRandomAccessList<E> extends SynchronizedList<E> implements RandomAccess { SynchronizedRandomAccessList(List<E> list) { super (list); } SynchronizedRandomAccessList(List<E> list, Object mutex) { super (list, mutex); } public List<E> subList( int fromIndex, int toIndex) { synchronized (mutex) { return new SynchronizedRandomAccessList<>( list.subList(fromIndex, toIndex), mutex); } } private static final long serialVersionUID = 1530674583602358482L; /** * Allows instances to be deserialized in pre-1.4 JREs (which do * not have SynchronizedRandomAccessList). SynchronizedList has * a readResolve method that inverts this transformation upon * deserialization. */ private Object writeReplace() { return new SynchronizedList<>(list); } } /** * Returns a synchronized (thread-safe) map backed by the specified * map. In order to guarantee serial access, it is critical that * <strong>all</strong> access to the backing map is accomplished * through the returned map.<p> * * It is imperative that the user manually synchronize on the returned * map when iterating over any of its collection views: * <pre> * Map m = Collections.synchronizedMap(new HashMap()); * ... * Set s = m.keySet(); // Needn't be in synchronized block * ... * synchronized (m) { // Synchronizing on m, not s! * Iterator i = s.iterator(); // Must be in synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned map will be serializable if the specified map is * serializable. * * @param <K> the class of the map keys * @param <V> the class of the map values * @param m the map to be "wrapped" in a synchronized map. * @return a synchronized view of the specified map. */ public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) { return new SynchronizedMap<>(m); } /** * @serial include */ private static class SynchronizedMap<K,V> implements Map<K,V>, Serializable { private static final long serialVersionUID = 1978198479659022715L; private final Map<K,V> m; // Backing Map final Object mutex; // Object on which to synchronize SynchronizedMap(Map<K,V> m) { this .m = Objects.requireNonNull(m); mutex = this ; } SynchronizedMap(Map<K,V> m, Object mutex) { this .m = m; this .mutex = mutex; } public int size() { synchronized (mutex) { return m.size();} } public boolean isEmpty() { synchronized (mutex) { return m.isEmpty();} } public boolean containsKey(Object key) { synchronized (mutex) { return m.containsKey(key);} } public boolean containsValue(Object value) { synchronized (mutex) { return m.containsValue(value);} } public V get(Object key) { synchronized (mutex) { return m.get(key);} } public V put(K key, V value) { synchronized (mutex) { return m.put(key, value);} } public V remove(Object key) { synchronized (mutex) { return m.remove(key);} } public void putAll(Map<? extends K, ? extends V> map) { synchronized (mutex) {m.putAll(map);} } public void clear() { synchronized (mutex) {m.clear();} } private transient Set<K> keySet; private transient Set<Map.Entry<K,V>> entrySet; private transient Collection<V> values; public Set<K> keySet() { synchronized (mutex) { if (keySet== null ) keySet = new SynchronizedSet<>(m.keySet(), mutex); return keySet; } } public Set<Map.Entry<K,V>> entrySet() { synchronized (mutex) { if (entrySet== null ) entrySet = new SynchronizedSet<>(m.entrySet(), mutex); return entrySet; } } public Collection<V> values() { synchronized (mutex) { if (values== null ) values = new SynchronizedCollection<>(m.values(), mutex); return values; } } public boolean equals(Object o) { if ( this == o) return true ; synchronized (mutex) { return m.equals(o);} } public int hashCode() { synchronized (mutex) { return m.hashCode();} } public String toString() { synchronized (mutex) { return m.toString();} } // Override default methods in Map @Override public V getOrDefault(Object k, V defaultValue) { synchronized (mutex) { return m.getOrDefault(k, defaultValue);} } @Override public void forEach(BiConsumer<? super K, ? super V> action) { synchronized (mutex) {m.forEach(action);} } @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { synchronized (mutex) {m.replaceAll(function);} } @Override public V putIfAbsent(K key, V value) { synchronized (mutex) { return m.putIfAbsent(key, value);} } @Override public boolean remove(Object key, Object value) { synchronized (mutex) { return m.remove(key, value);} } @Override public boolean replace(K key, V oldValue, V newValue) { synchronized (mutex) { return m.replace(key, oldValue, newValue);} } @Override public V replace(K key, V value) { synchronized (mutex) { return m.replace(key, value);} } @Override public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { synchronized (mutex) { return m.computeIfAbsent(key, mappingFunction);} } @Override public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { synchronized (mutex) { return m.computeIfPresent(key, remappingFunction);} } @Override public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { synchronized (mutex) { return m.compute(key, remappingFunction);} } @Override public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { synchronized (mutex) { return m.merge(key, value, remappingFunction);} } private void writeObject(ObjectOutputStream s) throws IOException { synchronized (mutex) {s.defaultWriteObject();} } } /** * Returns a synchronized (thread-safe) sorted map backed by the specified * sorted map. In order to guarantee serial access, it is critical that * <strong>all</strong> access to the backing sorted map is accomplished * through the returned sorted map (or its views).<p> * * It is imperative that the user manually synchronize on the returned * sorted map when iterating over any of its collection views, or the * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or * <tt>tailMap</tt> views. * <pre> * SortedMap m = Collections.synchronizedSortedMap(new TreeMap()); * ... * Set s = m.keySet(); // Needn't be in synchronized block * ... * synchronized (m) { // Synchronizing on m, not s! * Iterator i = s.iterator(); // Must be in synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * or: * <pre> * SortedMap m = Collections.synchronizedSortedMap(new TreeMap()); * SortedMap m2 = m.subMap(foo, bar); * ... * Set s2 = m2.keySet(); // Needn't be in synchronized block * ... * synchronized (m) { // Synchronizing on m, not m2 or s2! * Iterator i = s.iterator(); // Must be in synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned sorted map will be serializable if the specified * sorted map is serializable. * * @param <K> the class of the map keys * @param <V> the class of the map values * @param m the sorted map to be "wrapped" in a synchronized sorted map. * @return a synchronized view of the specified sorted map. */ public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) { return new SynchronizedSortedMap<>(m); } /** * @serial include */ static class SynchronizedSortedMap<K,V> extends SynchronizedMap<K,V> implements SortedMap<K,V> { private static final long serialVersionUID = -8798146769416483793L; private final SortedMap<K,V> sm; SynchronizedSortedMap(SortedMap<K,V> m) { super (m); sm = m; } SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) { super (m, mutex); sm = m; } public Comparator<? super K> comparator() { synchronized (mutex) { return sm.comparator();} } public SortedMap<K,V> subMap(K fromKey, K toKey) { synchronized (mutex) { return new SynchronizedSortedMap<>( sm.subMap(fromKey, toKey), mutex); } } public SortedMap<K,V> headMap(K toKey) { synchronized (mutex) { return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex); } } public SortedMap<K,V> tailMap(K fromKey) { synchronized (mutex) { return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex); } } public K firstKey() { synchronized (mutex) { return sm.firstKey();} } public K lastKey() { synchronized (mutex) { return sm.lastKey();} } } /** * Returns a synchronized (thread-safe) navigable map backed by the * specified navigable map. In order to guarantee serial access, it is * critical that <strong>all</strong> access to the backing navigable map is * accomplished through the returned navigable map (or its views).<p> * * It is imperative that the user manually synchronize on the returned * navigable map when iterating over any of its collection views, or the * collections views of any of its {@code subMap}, {@code headMap} or * {@code tailMap} views. * <pre> * NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap()); * ... * Set s = m.keySet(); // Needn't be in synchronized block * ... * synchronized (m) { // Synchronizing on m, not s! * Iterator i = s.iterator(); // Must be in synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * or: * <pre> * NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap()); * NavigableMap m2 = m.subMap(foo, true, bar, false); * ... * Set s2 = m2.keySet(); // Needn't be in synchronized block * ... * synchronized (m) { // Synchronizing on m, not m2 or s2! * Iterator i = s.iterator(); // Must be in synchronized block * while (i.hasNext()) * foo(i.next()); * } * </pre> * Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned navigable map will be serializable if the specified * navigable map is serializable. * * @param <K> the class of the map keys * @param <V> the class of the map values * @param m the navigable map to be "wrapped" in a synchronized navigable * map * @return a synchronized view of the specified navigable map. * @since 1.8 */ public static <K,V> NavigableMap<K,V> synchronizedNavigableMap(NavigableMap<K,V> m) { return new SynchronizedNavigableMap<>(m); } /** * A synchronized NavigableMap. * * @serial include */ static class SynchronizedNavigableMap<K,V> extends SynchronizedSortedMap<K,V> implements NavigableMap<K,V> { private static final long serialVersionUID = 699392247599746807L; private final NavigableMap<K,V> nm; SynchronizedNavigableMap(NavigableMap<K,V> m) { super (m); nm = m; } SynchronizedNavigableMap(NavigableMap<K,V> m, Object mutex) { super (m, mutex); nm = m; } public Entry<K, V> lowerEntry(K key) { synchronized (mutex) { return nm.lowerEntry(key); } } public K lowerKey(K key) { synchronized (mutex) { return nm.lowerKey(key); } } public Entry<K, V> floorEntry(K key) { synchronized (mutex) { return nm.floorEntry(key); } } public K floorKey(K key) { synchronized (mutex) { return nm.floorKey(key); } } public Entry<K, V> ceilingEntry(K key) { synchronized (mutex) { return nm.ceilingEntry(key); } } public K ceilingKey(K key) { synchronized (mutex) { return nm.ceilingKey(key); } } public Entry<K, V> higherEntry(K key) { synchronized (mutex) { return nm.higherEntry(key); } } public K higherKey(K key) { synchronized (mutex) { return nm.higherKey(key); } } public Entry<K, V> firstEntry() { synchronized (mutex) { return nm.firstEntry(); } } public Entry<K, V> lastEntry() { synchronized (mutex) { return nm.lastEntry(); } } public Entry<K, V> pollFirstEntry() { synchronized (mutex) { return nm.pollFirstEntry(); } } public Entry<K, V> pollLastEntry() { synchronized (mutex) { return nm.pollLastEntry(); } } public NavigableMap<K, V> descendingMap() { synchronized (mutex) { return new SynchronizedNavigableMap<>(nm.descendingMap(), mutex); } } public NavigableSet<K> keySet() { return navigableKeySet(); } public NavigableSet<K> navigableKeySet() { synchronized (mutex) { return new SynchronizedNavigableSet<>(nm.navigableKeySet(), mutex); } } public NavigableSet<K> descendingKeySet() { synchronized (mutex) { return new SynchronizedNavigableSet<>(nm.descendingKeySet(), mutex); } } public SortedMap<K,V> subMap(K fromKey, K toKey) { synchronized (mutex) { return new SynchronizedNavigableMap<>( nm.subMap(fromKey, true , toKey, false ), mutex); } } public SortedMap<K,V> headMap(K toKey) { synchronized (mutex) { return new SynchronizedNavigableMap<>(nm.headMap(toKey, false ), mutex); } } public SortedMap<K,V> tailMap(K fromKey) { synchronized (mutex) { return new SynchronizedNavigableMap<>(nm.tailMap(fromKey, true ),mutex); } } public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { synchronized (mutex) { return new SynchronizedNavigableMap<>( nm.subMap(fromKey, fromInclusive, toKey, toInclusive), mutex); } } public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { synchronized (mutex) { return new SynchronizedNavigableMap<>( nm.headMap(toKey, inclusive), mutex); } } public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { synchronized (mutex) { return new SynchronizedNavigableMap<>( nm.tailMap(fromKey, inclusive), mutex); } } } // Dynamically typesafe collection wrappers /** * Returns a dynamically typesafe view of the specified collection. * Any attempt to insert an element of the wrong type will result in an * immediate {@link ClassCastException}. Assuming a collection * contains no incorrectly typed elements prior to the time a * dynamically typesafe view is generated, and that all subsequent * access to the collection takes place through the view, it is * <i>guaranteed</i> that the collection cannot contain an incorrectly * typed element. * * <p>The generics mechanism in the language provides compile-time * (static) type checking, but it is possible to defeat this mechanism * with unchecked casts. Usually this is not a problem, as the compiler * issues warnings on all such unchecked operations. There are, however, * times when static type checking alone is not sufficient. For example, * suppose a collection is passed to a third-party library and it is * imperative that the library code not corrupt the collection by * inserting an element of the wrong type. * * <p>Another use of dynamically typesafe views is debugging. Suppose a * program fails with a {@code ClassCastException}, indicating that an * incorrectly typed element was put into a parameterized collection. * Unfortunately, the exception can occur at any time after the erroneous * element is inserted, so it typically provides little or no information * as to the real source of the problem. If the problem is reproducible, * one can quickly determine its source by temporarily modifying the * program to wrap the collection with a dynamically typesafe view. * For example, this declaration: * <pre> {@code * Collection<String> c = new HashSet<>(); * }</pre> * may be replaced temporarily by this one: * <pre> {@code * Collection<String> c = Collections.checkedCollection( * new HashSet<>(), String.class); * }</pre> * Running the program again will cause it to fail at the point where * an incorrectly typed element is inserted into the collection, clearly * identifying the source of the problem. Once the problem is fixed, the * modified declaration may be reverted back to the original. * * <p>The returned collection does <i>not</i> pass the hashCode and equals * operations through to the backing collection, but relies on * {@code Object}'s {@code equals} and {@code hashCode} methods. This * is necessary to preserve the contracts of these operations in the case * that the backing collection is a set or a list. * * <p>The returned collection will be serializable if the specified * collection is serializable. * * <p>Since {@code null} is considered to be a value of any reference * type, the returned collection permits insertion of null elements * whenever the backing collection does. * * @param <E> the class of the objects in the collection * @param c the collection for which a dynamically typesafe view is to be * returned * @param type the type of element that {@code c} is permitted to hold * @return a dynamically typesafe view of the specified collection * @since 1.5 */ public static <E> Collection<E> checkedCollection(Collection<E> c, Class<E> type) { return new CheckedCollection<>(c, type); } @SuppressWarnings ( "unchecked" ) static <T> T[] zeroLengthArray(Class<T> type) { return (T[]) Array.newInstance(type, 0 ); } /** * @serial include */ static class CheckedCollection<E> implements Collection<E>, Serializable { private static final long serialVersionUID = 1578914078182001775L; final Collection<E> c; final Class<E> type; @SuppressWarnings ( "unchecked" ) E typeCheck(Object o) { if (o != null && !type.isInstance(o)) throw new ClassCastException(badElementMsg(o)); return (E) o; } private String badElementMsg(Object o) { return "Attempt to insert " + o.getClass() + " element into collection with element type " + type; } CheckedCollection(Collection<E> c, Class<E> type) { this .c = Objects.requireNonNull(c, "c" ); this .type = Objects.requireNonNull(type, "type" ); } public int size() { return c.size(); } public boolean isEmpty() { return c.isEmpty(); } public boolean contains(Object o) { return c.contains(o); } public Object[] toArray() { return c.toArray(); } public <T> T[] toArray(T[] a) { return c.toArray(a); } public String toString() { return c.toString(); } public boolean remove(Object o) { return c.remove(o); } public void clear() { c.clear(); } public boolean containsAll(Collection<?> coll) { return c.containsAll(coll); } public boolean removeAll(Collection<?> coll) { return c.removeAll(coll); } public boolean retainAll(Collection<?> coll) { return c.retainAll(coll); } public Iterator<E> iterator() { // JDK-6363904 - unwrapped iterator could be typecast to // ListIterator with unsafe set() final Iterator<E> it = c.iterator(); return new Iterator<E>() { public boolean hasNext() { return it.hasNext(); } public E next() { return it.next(); } public void remove() { it.remove(); }}; } public boolean add(E e) { return c.add(typeCheck(e)); } private E[] zeroLengthElementArray; // Lazily initialized private E[] zeroLengthElementArray() { return zeroLengthElementArray != null ? zeroLengthElementArray : (zeroLengthElementArray = zeroLengthArray(type)); } @SuppressWarnings ( "unchecked" ) Collection<E> checkedCopyOf(Collection<? extends E> coll) { Object[] a; try { E[] z = zeroLengthElementArray(); a = coll.toArray(z); // Defend against coll violating the toArray contract if (a.getClass() != z.getClass()) a = Arrays.copyOf(a, a.length, z.getClass()); } catch (ArrayStoreException ignore) { // To get better and consistent diagnostics, // we call typeCheck explicitly on each element. // We call clone() to defend against coll retaining a // reference to the returned array and storing a bad // element into it after it has been type checked. a = coll.toArray().clone(); for (Object o : a) typeCheck(o); } // A slight abuse of the type system, but safe here. return (Collection<E>) Arrays.asList(a); } public boolean addAll(Collection<? extends E> coll) { // Doing things this way insulates us from concurrent changes // in the contents of coll and provides all-or-nothing // semantics (which we wouldn't get if we type-checked each // element as we added it) return c.addAll(checkedCopyOf(coll)); } // Override default methods in Collection @Override public void forEach(Consumer<? super E> action) {c.forEach(action);} @Override public boolean removeIf(Predicate<? super E> filter) { return c.removeIf(filter); } @Override public Spliterator<E> spliterator() { return c.spliterator();} @Override public Stream<E> stream() { return c.stream();} @Override public Stream<E> parallelStream() { return c.parallelStream();} } /** * Returns a dynamically typesafe view of the specified queue. * Any attempt to insert an element of the wrong type will result in * an immediate {@link ClassCastException}. Assuming a queue contains * no incorrectly typed elements prior to the time a dynamically typesafe * view is generated, and that all subsequent access to the queue * takes place through the view, it is <i>guaranteed</i> that the * queue cannot contain an incorrectly typed element. * * <p>A discussion of the use of dynamically typesafe views may be * found in the documentation for the {@link #checkedCollection * checkedCollection} method. * * <p>The returned queue will be serializable if the specified queue * is serializable. * * <p>Since {@code null} is considered to be a value of any reference * type, the returned queue permits insertion of {@code null} elements * whenever the backing queue does. * * @param <E> the class of the objects in the queue * @param queue the queue for which a dynamically typesafe view is to be * returned * @param type the type of element that {@code queue} is permitted to hold * @return a dynamically typesafe view of the specified queue * @since 1.8 */ public static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> type) { return new CheckedQueue<>(queue, type); } /** * @serial include */ static class CheckedQueue<E> extends CheckedCollection<E> implements Queue<E>, Serializable { private static final long serialVersionUID = 1433151992604707767L; final Queue<E> queue; CheckedQueue(Queue<E> queue, Class<E> elementType) { super (queue, elementType); this .queue = queue; } public E element() { return queue.element();} public boolean equals(Object o) { return o == this || c.equals(o);} public int hashCode() { return c.hashCode();} public E peek() { return queue.peek();} public E poll() { return queue.poll();} public E remove() { return queue.remove();} public boolean offer(E e) { return queue.offer(typeCheck(e));} } /** * Returns a dynamically typesafe view of the specified set. * Any attempt to insert an element of the wrong type will result in * an immediate {@link ClassCastException}. Assuming a set contains * no incorrectly typed elements prior to the time a dynamically typesafe * view is generated, and that all subsequent access to the set * takes place through the view, it is <i>guaranteed</i> that the * set cannot contain an incorrectly typed element. * * <p>A discussion of the use of dynamically typesafe views may be * found in the documentation for the {@link #checkedCollection * checkedCollection} method. * * <p>The returned set will be serializable if the specified set is * serializable. * * <p>Since {@code null} is considered to be a value of any reference * type, the returned set permits insertion of null elements whenever * the backing set does. * * @param <E> the class of the objects in the set * @param s the set for which a dynamically typesafe view is to be * returned * @param type the type of element that {@code s} is permitted to hold * @return a dynamically typesafe view of the specified set * @since 1.5 */ public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) { return new CheckedSet<>(s, type); } /** * @serial include */ static class CheckedSet<E> extends CheckedCollection<E> implements Set<E>, Serializable { private static final long serialVersionUID = 4694047833775013803L; CheckedSet(Set<E> s, Class<E> elementType) { super (s, elementType); } public boolean equals(Object o) { return o == this || c.equals(o); } public int hashCode() { return c.hashCode(); } } /** * Returns a dynamically typesafe view of the specified sorted set. * Any attempt to insert an element of the wrong type will result in an * immediate {@link ClassCastException}. Assuming a sorted set * contains no incorrectly typed elements prior to the time a * dynamically typesafe view is generated, and that all subsequent * access to the sorted set takes place through the view, it is * <i>guaranteed</i> that the sorted set cannot contain an incorrectly * typed element. * * <p>A discussion of the use of dynamically typesafe views may be * found in the documentation for the {@link #checkedCollection * checkedCollection} method. * * <p>The returned sorted set will be serializable if the specified sorted * set is serializable. * * <p>Since {@code null} is considered to be a value of any reference * type, the returned sorted set permits insertion of null elements * whenever the backing sorted set does. * * @param <E> the class of the objects in the set * @param s the sorted set for which a dynamically typesafe view is to be * returned * @param type the type of element that {@code s} is permitted to hold * @return a dynamically typesafe view of the specified sorted set * @since 1.5 */ public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s, Class<E> type) { return new CheckedSortedSet<>(s, type); } /** * @serial include */ static class CheckedSortedSet<E> extends CheckedSet<E> implements SortedSet<E>, Serializable { private static final long serialVersionUID = 1599911165492914959L; private final SortedSet<E> ss; CheckedSortedSet(SortedSet<E> s, Class<E> type) { super (s, type); ss = s; } public Comparator<? super E> comparator() { return ss.comparator(); } public E first() { return ss.first(); } public E last() { return ss.last(); } public SortedSet<E> subSet(E fromElement, E toElement) { return checkedSortedSet(ss.subSet(fromElement,toElement), type); } public SortedSet<E> headSet(E toElement) { return checkedSortedSet(ss.headSet(toElement), type); } public SortedSet<E> tailSet(E fromElement) { return checkedSortedSet(ss.tailSet(fromElement), type); } } /** * Returns a dynamically typesafe view of the specified navigable set. * Any attempt to insert an element of the wrong type will result in an * immediate {@link ClassCastException}. Assuming a navigable set * contains no incorrectly typed elements prior to the time a * dynamically typesafe view is generated, and that all subsequent * access to the navigable set takes place through the view, it is * <em>guaranteed</em> that the navigable set cannot contain an incorrectly * typed element. * * <p>A discussion of the use of dynamically typesafe views may be * found in the documentation for the {@link #checkedCollection * checkedCollection} method. * * <p>The returned navigable set will be serializable if the specified * navigable set is serializable. * * <p>Since {@code null} is considered to be a value of any reference * type, the returned navigable set permits insertion of null elements * whenever the backing sorted set does. * * @param <E> the class of the objects in the set * @param s the navigable set for which a dynamically typesafe view is to be * returned * @param type the type of element that {@code s} is permitted to hold * @return a dynamically typesafe view of the specified navigable set * @since 1.8 */ public static <E> NavigableSet<E> checkedNavigableSet(NavigableSet<E> s, Class<E> type) { return new CheckedNavigableSet<>(s, type); } /** * @serial include */ static class CheckedNavigableSet<E> extends CheckedSortedSet<E> implements NavigableSet<E>, Serializable { private static final long serialVersionUID = -5429120189805438922L; private final NavigableSet<E> ns; CheckedNavigableSet(NavigableSet<E> s, Class<E> type) { super (s, type); ns = s; } public E lower(E e) { return ns.lower(e); } public E floor(E e) { return ns.floor(e); } public E ceiling(E e) { return ns.ceiling(e); } public E higher(E e) { return ns.higher(e); } public E pollFirst() { return ns.pollFirst(); } public E pollLast() { return ns.pollLast(); } public NavigableSet<E> descendingSet() { return checkedNavigableSet(ns.descendingSet(), type); } public Iterator<E> descendingIterator() { return checkedNavigableSet(ns.descendingSet(), type).iterator(); } public NavigableSet<E> subSet(E fromElement, E toElement) { return checkedNavigableSet(ns.subSet(fromElement, true , toElement, false ), type); } public NavigableSet<E> headSet(E toElement) { return checkedNavigableSet(ns.headSet(toElement, false ), type); } public NavigableSet<E> tailSet(E fromElement) { return checkedNavigableSet(ns.tailSet(fromElement, true ), type); } public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { return checkedNavigableSet(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), type); } public NavigableSet<E> headSet(E toElement, boolean inclusive) { return checkedNavigableSet(ns.headSet(toElement, inclusive), type); } public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { return checkedNavigableSet(ns.tailSet(fromElement, inclusive), type); } } /** * Returns a dynamically typesafe view of the specified list. * Any attempt to insert an element of the wrong type will result in * an immediate {@link ClassCastException}. Assuming a list contains * no incorrectly typed elements prior to the time a dynamically typesafe * view is generated, and that all subsequent access to the list * takes place through the view, it is <i>guaranteed</i> that the * list cannot contain an incorrectly typed element. * * <p>A discussion of the use of dynamically typesafe views may be * found in the documentation for the {@link #checkedCollection * checkedCollection} method. * * <p>The returned list will be serializable if the specified list * is serializable. * * <p>Since {@code null} is considered to be a value of any reference * type, the returned list permits insertion of null elements whenever * the backing list does. * * @param <E> the class of the objects in the list * @param list the list for which a dynamically typesafe view is to be * returned * @param type the type of element that {@code list} is permitted to hold * @return a dynamically typesafe view of the specified list * @since 1.5 */ public static <E> List<E> checkedList(List<E> list, Class<E> type) { return (list instanceof RandomAccess ? new CheckedRandomAccessList<>(list, type) : new CheckedList<>(list, type)); } /** * @serial include */ static class CheckedList<E> extends CheckedCollection<E> implements List<E> { private static final long serialVersionUID = 65247728283967356L; final List<E> list; CheckedList(List<E> list, Class<E> type) { super (list, type); this .list = list; } public boolean equals(Object o) { return o == this || list.equals(o); } public int hashCode() { return list.hashCode(); } public E get( int index) { return list.get(index); } public E remove( int index) { return list.remove(index); } public int indexOf(Object o) { return list.indexOf(o); } public int lastIndexOf(Object o) { return list.lastIndexOf(o); } public E set( int index, E element) { return list.set(index, typeCheck(element)); } public void add( int index, E element) { list.add(index, typeCheck(element)); } public boolean addAll( int index, Collection<? extends E> c) { return list.addAll(index, checkedCopyOf(c)); } public ListIterator<E> listIterator() { return listIterator( 0 ); } public ListIterator<E> listIterator( final int index) { final ListIterator<E> i = list.listIterator(index); return new ListIterator<E>() { public boolean hasNext() { return i.hasNext(); } public E next() { return i.next(); } public boolean hasPrevious() { return i.hasPrevious(); } public E previous() { return i.previous(); } public int nextIndex() { return i.nextIndex(); } public int previousIndex() { return i.previousIndex(); } public void remove() { i.remove(); } public void set(E e) { i.set(typeCheck(e)); } public void add(E e) { i.add(typeCheck(e)); } @Override public void forEachRemaining(Consumer<? super E> action) { i.forEachRemaining(action); } }; } public List<E> subList( int fromIndex, int toIndex) { return new CheckedList<>(list.subList(fromIndex, toIndex), type); } /** * {@inheritDoc} * * @throws ClassCastException if the class of an element returned by the * operator prevents it from being added to this collection. The * exception may be thrown after some elements of the list have * already been replaced. */ @Override public void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); list.replaceAll(e -> typeCheck(operator.apply(e))); } @Override public void sort(Comparator<? super E> c) { list.sort(c); } } /** * @serial include */ static class CheckedRandomAccessList<E> extends CheckedList<E> implements RandomAccess { private static final long serialVersionUID = 1638200125423088369L; CheckedRandomAccessList(List<E> list, Class<E> type) { super (list, type); } public List<E> subList( int fromIndex, int toIndex) { return new CheckedRandomAccessList<>( list.subList(fromIndex, toIndex), type); } } /** * Returns a dynamically typesafe view of the specified map. * Any attempt to insert a mapping whose key or value have the wrong * type will result in an immediate {@link ClassCastException}. * Similarly, any attempt to modify the value currently associated with * a key will result in an immediate {@link ClassCastException}, * whether the modification is attempted directly through the map * itself, or through a {@link Map.Entry} instance obtained from the * map's {@link Map#entrySet() entry set} view. * * <p>Assuming a map contains no incorrectly typed keys or values * prior to the time a dynamically typesafe view is generated, and * that all subsequent access to the map takes place through the view * (or one of its collection views), it is <i>guaranteed</i> that the * map cannot contain an incorrectly typed key or value. * * <p>A discussion of the use of dynamically typesafe views may be * found in the documentation for the {@link #checkedCollection * checkedCollection} method. * * <p>The returned map will be serializable if the specified map is * serializable. * * <p>Since {@code null} is considered to be a value of any reference * type, the returned map permits insertion of null keys or values * whenever the backing map does. * * @param <K> the class of the map keys * @param <V> the class of the map values * @param m the map for which a dynamically typesafe view is to be * returned * @param keyType the type of key that {@code m} is permitted to hold * @param valueType the type of value that {@code m} is permitted to hold * @return a dynamically typesafe view of the specified map * @since 1.5 */ public static <K, V> Map<K, V> checkedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) { return new CheckedMap<>(m, keyType, valueType); } /** * @serial include */ private static class CheckedMap<K,V> implements Map<K,V>, Serializable { private static final long serialVersionUID = 5742860141034234728L; private final Map<K, V> m; final Class<K> keyType; final Class<V> valueType; private void typeCheck(Object key, Object value) { if (key != null && !keyType.isInstance(key)) throw new ClassCastException(badKeyMsg(key)); if (value != null && !valueType.isInstance(value)) throw new ClassCastException(badValueMsg(value)); } private BiFunction<? super K, ? super V, ? extends V> typeCheck( BiFunction<? super K, ? super V, ? extends V> func) { Objects.requireNonNull(func); return (k, v) -> { V newValue = func.apply(k, v); typeCheck(k, newValue); return newValue; }; } private String badKeyMsg(Object key) { return "Attempt to insert " + key.getClass() + " key into map with key type " + keyType; } private String badValueMsg(Object value) { return "Attempt to insert " + value.getClass() + " value into map with value type " + valueType; } CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) { this .m = Objects.requireNonNull(m); this .keyType = Objects.requireNonNull(keyType); this .valueType = Objects.requireNonNull(valueType); } public int size() { return m.size(); } public boolean isEmpty() { return m.isEmpty(); } public boolean containsKey(Object key) { return m.containsKey(key); } public boolean containsValue(Object v) { return m.containsValue(v); } public V get(Object key) { return m.get(key); } public V remove(Object key) { return m.remove(key); } public void clear() { m.clear(); } public Set<K> keySet() { return m.keySet(); } public Collection<V> values() { return m.values(); } public boolean equals(Object o) { return o == this || m.equals(o); } public int hashCode() { return m.hashCode(); } public String toString() { return m.toString(); } public V put(K key, V value) { typeCheck(key, value); return m.put(key, value); } @SuppressWarnings ( "unchecked" ) public void putAll(Map<? extends K, ? extends V> t) { // Satisfy the following goals: // - good diagnostics in case of type mismatch // - all-or-nothing semantics // - protection from malicious t // - correct behavior if t is a concurrent map Object[] entries = t.entrySet().toArray(); List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length); for (Object o : entries) { Map.Entry<?,?> e = (Map.Entry<?,?>) o; Object k = e.getKey(); Object v = e.getValue(); typeCheck(k, v); checked.add( new AbstractMap.SimpleImmutableEntry<>((K)k, (V)v)); } for (Map.Entry<K,V> e : checked) m.put(e.getKey(), e.getValue()); } private transient Set<Map.Entry<K,V>> entrySet; public Set<Map.Entry<K,V>> entrySet() { if (entrySet== null ) entrySet = new CheckedEntrySet<>(m.entrySet(), valueType); return entrySet; } // Override default methods in Map @Override public void forEach(BiConsumer<? super K, ? super V> action) { m.forEach(action); } @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { m.replaceAll(typeCheck(function)); } @Override public V putIfAbsent(K key, V value) { typeCheck(key, value); return m.putIfAbsent(key, value); } @Override public boolean remove(Object key, Object value) { return m.remove(key, value); } @Override public boolean replace(K key, V oldValue, V newValue) { typeCheck(key, newValue); return m.replace(key, oldValue, newValue); } @Override public V replace(K key, V value) { typeCheck(key, value); return m.replace(key, value); } @Override public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { Objects.requireNonNull(mappingFunction); return m.computeIfAbsent(key, k -> { V value = mappingFunction.apply(k); typeCheck(k, value); return value; }); } @Override public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { return m.computeIfPresent(key, typeCheck(remappingFunction)); } @Override public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { return m.compute(key, typeCheck(remappingFunction)); } @Override public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { Objects.requireNonNull(remappingFunction); return m.merge(key, value, (v1, v2) -> { V newValue = remappingFunction.apply(v1, v2); typeCheck( null , newValue); return newValue; }); } /** * We need this class in addition to CheckedSet as Map.Entry permits * modification of the backing Map via the setValue operation. This * class is subtle: there are many possible attacks that must be * thwarted. * * @serial exclude */ static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> { private final Set<Map.Entry<K,V>> s; private final Class<V> valueType; CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) { this .s = s; this .valueType = valueType; } public int size() { return s.size(); } public boolean isEmpty() { return s.isEmpty(); } public String toString() { return s.toString(); } public int hashCode() { return s.hashCode(); } public void clear() { s.clear(); } public boolean add(Map.Entry<K, V> e) { throw new UnsupportedOperationException(); } public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) { throw new UnsupportedOperationException(); } public Iterator<Map.Entry<K,V>> iterator() { final Iterator<Map.Entry<K, V>> i = s.iterator(); final Class<V> valueType = this .valueType; return new Iterator<Map.Entry<K,V>>() { public boolean hasNext() { return i.hasNext(); } public void remove() { i.remove(); } public Map.Entry<K,V> next() { return checkedEntry(i.next(), valueType); } }; } @SuppressWarnings ( "unchecked" ) public Object[] toArray() { Object[] source = s.toArray(); /* * Ensure that we don't get an ArrayStoreException even if * s.toArray returns an array of something other than Object */ Object[] dest = (CheckedEntry. class .isInstance( source.getClass().getComponentType()) ? source : new Object[source.length]); for ( int i = 0 ; i < source.length; i++) dest[i] = checkedEntry((Map.Entry<K,V>)source[i], valueType); return dest; } @SuppressWarnings ( "unchecked" ) public <T> T[] toArray(T[] a) { // We don't pass a to s.toArray, to avoid window of // vulnerability wherein an unscrupulous multithreaded client // could get his hands on raw (unwrapped) Entries from s. T[] arr = s.toArray(a.length== 0 ? a : Arrays.copyOf(a, 0 )); for ( int i= 0 ; i<arr.length; i++) arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i], valueType); if (arr.length > a.length) return arr; System.arraycopy(arr, 0 , a, 0 , arr.length); if (a.length > arr.length) a[arr.length] = null ; return a; } /** * This method is overridden to protect the backing set against * an object with a nefarious equals function that senses * that the equality-candidate is Map.Entry and calls its * setValue method. */ public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false ; Map.Entry<?,?> e = (Map.Entry<?,?>) o; return s.contains( (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType)); } /** * The bulk collection methods are overridden to protect * against an unscrupulous collection whose contains(Object o) * method senses when o is a Map.Entry, and calls o.setValue. */ public boolean containsAll(Collection<?> c) { for (Object o : c) if (!contains(o)) // Invokes safe contains() above return false ; return true ; } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false ; return s.remove( new AbstractMap.SimpleImmutableEntry <>((Map.Entry<?,?>)o)); } public boolean removeAll(Collection<?> c) { return batchRemove(c, false ); } public boolean retainAll(Collection<?> c) { return batchRemove(c, true ); } private boolean batchRemove(Collection<?> c, boolean complement) { Objects.requireNonNull(c); boolean modified = false ; Iterator<Map.Entry<K,V>> it = iterator(); while (it.hasNext()) { if (c.contains(it.next()) != complement) { it.remove(); modified = true ; } } return modified; } public boolean equals(Object o) { if (o == this ) return true ; if (!(o instanceof Set)) return false ; Set<?> that = (Set<?>) o; return that.size() == s.size() && containsAll(that); // Invokes safe containsAll() above } static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e, Class<T> valueType) { return new CheckedEntry<>(e, valueType); } /** * This "wrapper class" serves two purposes: it prevents * the client from modifying the backing Map, by short-circuiting * the setValue method, and it protects the backing Map against * an ill-behaved Map.Entry that attempts to modify another * Map.Entry when asked to perform an equality check. */ private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> { private final Map.Entry<K, V> e; private final Class<T> valueType; CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) { this .e = Objects.requireNonNull(e); this .valueType = Objects.requireNonNull(valueType); } public K getKey() { return e.getKey(); } public V getValue() { return e.getValue(); } public int hashCode() { return e.hashCode(); } public String toString() { return e.toString(); } public V setValue(V value) { if (value != null && !valueType.isInstance(value)) throw new ClassCastException(badValueMsg(value)); return e.setValue(value); } private String badValueMsg(Object value) { return "Attempt to insert " + value.getClass() + " value into map with value type " + valueType; } public boolean equals(Object o) { if (o == this ) return true ; if (!(o instanceof Map.Entry)) return false ; return e.equals( new AbstractMap.SimpleImmutableEntry <>((Map.Entry<?,?>)o)); } } } } /** * Returns a dynamically typesafe view of the specified sorted map. * Any attempt to insert a mapping whose key or value have the wrong * type will result in an immediate {@link ClassCastException}. * Similarly, any attempt to modify the value currently associated with * a key will result in an immediate {@link ClassCastException}, * whether the modification is attempted directly through the map * itself, or through a {@link Map.Entry} instance obtained from the * map's {@link Map#entrySet() entry set} view. * * <p>Assuming a map contains no incorrectly typed keys or values * prior to the time a dynamically typesafe view is generated, and * that all subsequent access to the map takes place through the view * (or one of its collection views), it is <i>guaranteed</i> that the * map cannot contain an incorrectly typed key or value. * * <p>A discussion of the use of dynamically typesafe views may be * found in the documentation for the {@link #checkedCollection * checkedCollection} method. * * <p>The returned map will be serializable if the specified map is * serializable. * * <p>Since {@code null} is considered to be a value of any reference * type, the returned map permits insertion of null keys or values * whenever the backing map does. * * @param <K> the class of the map keys * @param <V> the class of the map values * @param m the map for which a dynamically typesafe view is to be * returned * @param keyType the type of key that {@code m} is permitted to hold * @param valueType the type of value that {@code m} is permitted to hold * @return a dynamically typesafe view of the specified map * @since 1.5 */ public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m, Class<K> keyType, Class<V> valueType) { return new CheckedSortedMap<>(m, keyType, valueType); } /** * @serial include */ static class CheckedSortedMap<K,V> extends CheckedMap<K,V> implements SortedMap<K,V>, Serializable { private static final long serialVersionUID = 1599671320688067438L; private final SortedMap<K, V> sm; CheckedSortedMap(SortedMap<K, V> m, Class<K> keyType, Class<V> valueType) { super (m, keyType, valueType); sm = m; } public Comparator<? super K> comparator() { return sm.comparator(); } public K firstKey() { return sm.firstKey(); } public K lastKey() { return sm.lastKey(); } public SortedMap<K,V> subMap(K fromKey, K toKey) { return checkedSortedMap(sm.subMap(fromKey, toKey), keyType, valueType); } public SortedMap<K,V> headMap(K toKey) { return checkedSortedMap(sm.headMap(toKey), keyType, valueType); } public SortedMap<K,V> tailMap(K fromKey) { return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType); } } /** * Returns a dynamically typesafe view of the specified navigable map. * Any attempt to insert a mapping whose key or value have the wrong * type will result in an immediate {@link ClassCastException}. * Similarly, any attempt to modify the value currently associated with * a key will result in an immediate {@link ClassCastException}, * whether the modification is attempted directly through the map * itself, or through a {@link Map.Entry} instance obtained from the * map's {@link Map#entrySet() entry set} view. * * <p>Assuming a map contains no incorrectly typed keys or values * prior to the time a dynamically typesafe view is generated, and * that all subsequent access to the map takes place through the view * (or one of its collection views), it is <em>guaranteed</em> that the * map cannot contain an incorrectly typed key or value. * * <p>A discussion of the use of dynamically typesafe views may be * found in the documentation for the {@link #checkedCollection * checkedCollection} method. * * <p>The returned map will be serializable if the specified map is * serializable. * * <p>Since {@code null} is considered to be a value of any reference * type, the returned map permits insertion of null keys or values * whenever the backing map does. * * @param <K> type of map keys * @param <V> type of map values * @param m the map for which a dynamically typesafe view is to be * returned * @param keyType the type of key that {@code m} is permitted to hold * @param valueType the type of value that {@code m} is permitted to hold * @return a dynamically typesafe view of the specified map * @since 1.8 */ public static <K,V> NavigableMap<K,V> checkedNavigableMap(NavigableMap<K, V> m, Class<K> keyType, Class<V> valueType) { return new CheckedNavigableMap<>(m, keyType, valueType); } /** * @serial include */ static class CheckedNavigableMap<K,V> extends CheckedSortedMap<K,V> implements NavigableMap<K,V>, Serializable { private static final long serialVersionUID = -4852462692372534096L; private final NavigableMap<K, V> nm; CheckedNavigableMap(NavigableMap<K, V> m, Class<K> keyType, Class<V> valueType) { super (m, keyType, valueType); nm = m; } public Comparator<? super K> comparator() { return nm.comparator(); } public K firstKey() { return nm.firstKey(); } public K lastKey() { return nm.lastKey(); } public Entry<K, V> lowerEntry(K key) { Entry<K,V> lower = nm.lowerEntry(key); return ( null != lower) ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(lower, valueType) : null ; } public K lowerKey(K key) { return nm.lowerKey(key); } public Entry<K, V> floorEntry(K key) { Entry<K,V> floor = nm.floorEntry(key); return ( null != floor) ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(floor, valueType) : null ; } public K floorKey(K key) { return nm.floorKey(key); } public Entry<K, V> ceilingEntry(K key) { Entry<K,V> ceiling = nm.ceilingEntry(key); return ( null != ceiling) ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(ceiling, valueType) : null ; } public K ceilingKey(K key) { return nm.ceilingKey(key); } public Entry<K, V> higherEntry(K key) { Entry<K,V> higher = nm.higherEntry(key); return ( null != higher) ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(higher, valueType) : null ; } public K higherKey(K key) { return nm.higherKey(key); } public Entry<K, V> firstEntry() { Entry<K,V> first = nm.firstEntry(); return ( null != first) ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(first, valueType) : null ; } public Entry<K, V> lastEntry() { Entry<K,V> last = nm.lastEntry(); return ( null != last) ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(last, valueType) : null ; } public Entry<K, V> pollFirstEntry() { Entry<K,V> entry = nm.pollFirstEntry(); return ( null == entry) ? null : new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType); } public Entry<K, V> pollLastEntry() { Entry<K,V> entry = nm.pollLastEntry(); return ( null == entry) ? null : new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType); } public NavigableMap<K, V> descendingMap() { return checkedNavigableMap(nm.descendingMap(), keyType, valueType); } public NavigableSet<K> keySet() { return navigableKeySet(); } public NavigableSet<K> navigableKeySet() { return checkedNavigableSet(nm.navigableKeySet(), keyType); } public NavigableSet<K> descendingKeySet() { return checkedNavigableSet(nm.descendingKeySet(), keyType); } @Override public NavigableMap<K,V> subMap(K fromKey, K toKey) { return checkedNavigableMap(nm.subMap(fromKey, true , toKey, false ), keyType, valueType); } @Override public NavigableMap<K,V> headMap(K toKey) { return checkedNavigableMap(nm.headMap(toKey, false ), keyType, valueType); } @Override public NavigableMap<K,V> tailMap(K fromKey) { return checkedNavigableMap(nm.tailMap(fromKey, true ), keyType, valueType); } public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { return checkedNavigableMap(nm.subMap(fromKey, fromInclusive, toKey, toInclusive), keyType, valueType); } public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { return checkedNavigableMap(nm.headMap(toKey, inclusive), keyType, valueType); } public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { return checkedNavigableMap(nm.tailMap(fromKey, inclusive), keyType, valueType); } } // Empty collections /** * Returns an iterator that has no elements. More precisely, * * <ul> * <li>{@link Iterator#hasNext hasNext} always returns {@code * false}.</li> * <li>{@link Iterator#next next} always throws {@link * NoSuchElementException}.</li> * <li>{@link Iterator#remove remove} always throws {@link * IllegalStateException}.</li> * </ul> * * <p>Implementations of this method are permitted, but not * required, to return the same object from multiple invocations. * * @param <T> type of elements, if there were any, in the iterator * @return an empty iterator * @since 1.7 */ @SuppressWarnings ( "unchecked" ) public static <T> Iterator<T> emptyIterator() { return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR; } private static class EmptyIterator<E> implements Iterator<E> { static final EmptyIterator<Object> EMPTY_ITERATOR = new EmptyIterator<>(); public boolean hasNext() { return false ; } public E next() { throw new NoSuchElementException(); } public void remove() { throw new IllegalStateException(); } @Override public void forEachRemaining(Consumer<? super E> action) { Objects.requireNonNull(action); } } /** * Returns a list iterator that has no elements. More precisely, * * <ul> * <li>{@link Iterator#hasNext hasNext} and {@link * ListIterator#hasPrevious hasPrevious} always return {@code * false}.</li> * <li>{@link Iterator#next next} and {@link ListIterator#previous * previous} always throw {@link NoSuchElementException}.</li> * <li>{@link Iterator#remove remove} and {@link ListIterator#set * set} always throw {@link IllegalStateException}.</li> * <li>{@link ListIterator#add add} always throws {@link * UnsupportedOperationException}.</li> * <li>{@link ListIterator#nextIndex nextIndex} always returns * {@code 0}.</li> * <li>{@link ListIterator#previousIndex previousIndex} always * returns {@code -1}.</li> * </ul> * * <p>Implementations of this method are permitted, but not * required, to return the same object from multiple invocations. * * @param <T> type of elements, if there were any, in the iterator * @return an empty list iterator * @since 1.7 */ @SuppressWarnings ( "unchecked" ) public static <T> ListIterator<T> emptyListIterator() { return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR; } private static class EmptyListIterator<E> extends EmptyIterator<E> implements ListIterator<E> { static final EmptyListIterator<Object> EMPTY_ITERATOR = new EmptyListIterator<>(); public boolean hasPrevious() { return false ; } public E previous() { throw new NoSuchElementException(); } public int nextIndex() { return 0 ; } public int previousIndex() { return - 1 ; } public void set(E e) { throw new IllegalStateException(); } public void add(E e) { throw new UnsupportedOperationException(); } } /** * Returns an enumeration that has no elements. More precisely, * * <ul> * <li>{@link Enumeration#hasMoreElements hasMoreElements} always * returns {@code false}.</li> * <li> {@link Enumeration#nextElement nextElement} always throws * {@link NoSuchElementException}.</li> * </ul> * * <p>Implementations of this method are permitted, but not * required, to return the same object from multiple invocations. * * @param <T> the class of the objects in the enumeration * @return an empty enumeration * @since 1.7 */ @SuppressWarnings ( "unchecked" ) public static <T> Enumeration<T> emptyEnumeration() { return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION; } private static class EmptyEnumeration<E> implements Enumeration<E> { static final EmptyEnumeration<Object> EMPTY_ENUMERATION = new EmptyEnumeration<>(); public boolean hasMoreElements() { return false ; } public E nextElement() { throw new NoSuchElementException(); } } /** * The empty set (immutable). This set is serializable. * * @see #emptySet() */ @SuppressWarnings ( "rawtypes" ) public static final Set EMPTY_SET = new EmptySet<>(); /** * Returns an empty set (immutable). This set is serializable. * Unlike the like-named field, this method is parameterized. * * <p>This example illustrates the type-safe way to obtain an empty set: * <pre> * Set<String> s = Collections.emptySet(); * </pre> * @implNote Implementations of this method need not create a separate * {@code Set} object for each call. Using this method is likely to have * comparable cost to using the like-named field. (Unlike this method, the * field does not provide type safety.) * * @param <T> the class of the objects in the set * @return the empty set * * @see #EMPTY_SET * @since 1.5 */ @SuppressWarnings ( "unchecked" ) public static final <T> Set<T> emptySet() { return (Set<T>) EMPTY_SET; } /** * @serial include */ private static class EmptySet<E> extends AbstractSet<E> implements Serializable { private static final long serialVersionUID = 1582296315990362920L; public Iterator<E> iterator() { return emptyIterator(); } public int size() { return 0 ;} public boolean isEmpty() { return true ;} public boolean contains(Object obj) { return false ;} public boolean containsAll(Collection<?> c) { return c.isEmpty(); } public Object[] toArray() { return new Object[ 0 ]; } public <T> T[] toArray(T[] a) { if (a.length > 0 ) a[ 0 ] = null ; return a; } // Override default methods in Collection @Override public void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); } @Override public boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); return false ; } @Override public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); } // Preserves singleton property private Object readResolve() { return EMPTY_SET; } } /** * Returns an empty sorted set (immutable). This set is serializable. * * <p>This example illustrates the type-safe way to obtain an empty * sorted set: * <pre> {@code * SortedSet<String> s = Collections.emptySortedSet(); * }</pre> * * @implNote Implementations of this method need not create a separate * {@code SortedSet} object for each call. * * @param <E> type of elements, if there were any, in the set * @return the empty sorted set * @since 1.8 */ @SuppressWarnings ( "unchecked" ) public static <E> SortedSet<E> emptySortedSet() { return (SortedSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET; } /** * Returns an empty navigable set (immutable). This set is serializable. * * <p>This example illustrates the type-safe way to obtain an empty * navigable set: * <pre> {@code * NavigableSet<String> s = Collections.emptyNavigableSet(); * }</pre> * * @implNote Implementations of this method need not * create a separate {@code NavigableSet} object for each call. * * @param <E> type of elements, if there were any, in the set * @return the empty navigable set * @since 1.8 */ @SuppressWarnings ( "unchecked" ) public static <E> NavigableSet<E> emptyNavigableSet() { return (NavigableSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET; } /** * The empty list (immutable). This list is serializable. * * @see #emptyList() */ @SuppressWarnings ( "rawtypes" ) public static final List EMPTY_LIST = new EmptyList<>(); /** * Returns an empty list (immutable). This list is serializable. * * <p>This example illustrates the type-safe way to obtain an empty list: * <pre> * List<String> s = Collections.emptyList(); * </pre> * * @implNote * Implementations of this method need not create a separate <tt>List</tt> * object for each call. Using this method is likely to have comparable * cost to using the like-named field. (Unlike this method, the field does * not provide type safety.) * * @param <T> type of elements, if there were any, in the list * @return an empty immutable list * * @see #EMPTY_LIST * @since 1.5 */ @SuppressWarnings ( "unchecked" ) public static final <T> List<T> emptyList() { return (List<T>) EMPTY_LIST; } /** * @serial include */ private static class EmptyList<E> extends AbstractList<E> implements RandomAccess, Serializable { private static final long serialVersionUID = 8842843931221139166L; public Iterator<E> iterator() { return emptyIterator(); } public ListIterator<E> listIterator() { return emptyListIterator(); } public int size() { return 0 ;} public boolean isEmpty() { return true ;} public boolean contains(Object obj) { return false ;} public boolean containsAll(Collection<?> c) { return c.isEmpty(); } public Object[] toArray() { return new Object[ 0 ]; } public <T> T[] toArray(T[] a) { if (a.length > 0 ) a[ 0 ] = null ; return a; } public E get( int index) { throw new IndexOutOfBoundsException( "Index: " +index); } public boolean equals(Object o) { return (o instanceof List) && ((List<?>)o).isEmpty(); } public int hashCode() { return 1 ; } @Override public boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); return false ; } @Override public void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); } @Override public void sort(Comparator<? super E> c) { } // Override default methods in Collection @Override public void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); } @Override public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); } // Preserves singleton property private Object readResolve() { return EMPTY_LIST; } } /** * The empty map (immutable). This map is serializable. * * @see #emptyMap() * @since 1.3 */ @SuppressWarnings ( "rawtypes" ) public static final Map EMPTY_MAP = new EmptyMap<>(); /** * Returns an empty map (immutable). This map is serializable. * * <p>This example illustrates the type-safe way to obtain an empty map: * <pre> * Map<String, Date> s = Collections.emptyMap(); * </pre> * @implNote Implementations of this method need not create a separate * {@code Map} object for each call. Using this method is likely to have * comparable cost to using the like-named field. (Unlike this method, the * field does not provide type safety.) * * @param <K> the class of the map keys * @param <V> the class of the map values * @return an empty map * @see #EMPTY_MAP * @since 1.5 */ @SuppressWarnings ( "unchecked" ) public static final <K,V> Map<K,V> emptyMap() { return (Map<K,V>) EMPTY_MAP; } /** * Returns an empty sorted map (immutable). This map is serializable. * * <p>This example illustrates the type-safe way to obtain an empty map: * <pre> {@code * SortedMap<String, Date> s = Collections.emptySortedMap(); * }</pre> * * @implNote Implementations of this method need not create a separate * {@code SortedMap} object for each call. * * @param <K> the class of the map keys * @param <V> the class of the map values * @return an empty sorted map * @since 1.8 */ @SuppressWarnings ( "unchecked" ) public static final <K,V> SortedMap<K,V> emptySortedMap() { return (SortedMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP; } /** * Returns an empty navigable map (immutable). This map is serializable. * * <p>This example illustrates the type-safe way to obtain an empty map: * <pre> {@code * NavigableMap<String, Date> s = Collections.emptyNavigableMap(); * }</pre> * * @implNote Implementations of this method need not create a separate * {@code NavigableMap} object for each call. * * @param <K> the class of the map keys * @param <V> the class of the map values * @return an empty navigable map * @since 1.8 */ @SuppressWarnings ( "unchecked" ) public static final <K,V> NavigableMap<K,V> emptyNavigableMap() { return (NavigableMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP; } /** * @serial include */ private static class EmptyMap<K,V> extends AbstractMap<K,V> implements Serializable { private static final long serialVersionUID = 6428348081105594320L; public int size() { return 0 ;} public boolean isEmpty() { return true ;} public boolean containsKey(Object key) { return false ;} public boolean containsValue(Object value) { return false ;} public V get(Object key) { return null ;} public Set<K> keySet() { return emptySet();} public Collection<V> values() { return emptySet();} public Set<Map.Entry<K,V>> entrySet() { return emptySet();} public boolean equals(Object o) { return (o instanceof Map) && ((Map<?,?>)o).isEmpty(); } public int hashCode() { return 0 ;} // Override default methods in Map @Override @SuppressWarnings ( "unchecked" ) public V getOrDefault(Object k, V defaultValue) { return defaultValue; } @Override public void forEach(BiConsumer<? super K, ? super V> action) { Objects.requireNonNull(action); } @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { Objects.requireNonNull(function); } @Override public V putIfAbsent(K key, V value) { throw new UnsupportedOperationException(); } @Override public boolean remove(Object key, Object value) { throw new UnsupportedOperationException(); } @Override public boolean replace(K key, V oldValue, V newValue) { throw new UnsupportedOperationException(); } @Override public V replace(K key, V value) { throw new UnsupportedOperationException(); } @Override public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { throw new UnsupportedOperationException(); } @Override public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { throw new UnsupportedOperationException(); } @Override public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { throw new UnsupportedOperationException(); } @Override public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { throw new UnsupportedOperationException(); } // Preserves singleton property private Object readResolve() { return EMPTY_MAP; } } // Singleton collections /** * Returns an immutable set containing only the specified object. * The returned set is serializable. * * @param <T> the class of the objects in the set * @param o the sole object to be stored in the returned set. * @return an immutable set containing only the specified object. */ public static <T> Set<T> singleton(T o) { return new SingletonSet<>(o); } static <E> Iterator<E> singletonIterator( final E e) { return new Iterator<E>() { private boolean hasNext = true ; public boolean hasNext() { return hasNext; } public E next() { if (hasNext) { hasNext = false ; return e; } throw new NoSuchElementException(); } public void remove() { throw new UnsupportedOperationException(); } @Override public void forEachRemaining(Consumer<? super E> action) { Objects.requireNonNull(action); if (hasNext) { action.accept(e); hasNext = false ; } } }; } /** * Creates a {@code Spliterator} with only the specified element * * @param <T> Type of elements * @return A singleton {@code Spliterator} */ static <T> Spliterator<T> singletonSpliterator( final T element) { return new Spliterator<T>() { long est = 1 ; @Override public Spliterator<T> trySplit() { return null ; } @Override public boolean tryAdvance(Consumer<? super T> consumer) { Objects.requireNonNull(consumer); if (est > 0 ) { est--; consumer.accept(element); return true ; } return false ; } @Override public void forEachRemaining(Consumer<? super T> consumer) { tryAdvance(consumer); } @Override public long estimateSize() { return est; } @Override public int characteristics() { int value = (element != null ) ? Spliterator.NONNULL : 0 ; return value | Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.IMMUTABLE | Spliterator.DISTINCT | Spliterator.ORDERED; } }; } /** * @serial include */ private static class SingletonSet<E> extends AbstractSet<E> implements Serializable { private static final long serialVersionUID = 3193687207550431679L; private final E element; SingletonSet(E e) {element = e;} public Iterator<E> iterator() { return singletonIterator(element); } public int size() { return 1 ;} public boolean contains(Object o) { return eq(o, element);} // Override default methods for Collection @Override public void forEach(Consumer<? super E> action) { action.accept(element); } @Override public Spliterator<E> spliterator() { return singletonSpliterator(element); } @Override public boolean removeIf(Predicate<? super E> filter) { throw new UnsupportedOperationException(); } } /** * Returns an immutable list containing only the specified object. * The returned list is serializable. * * @param <T> the class of the objects in the list * @param o the sole object to be stored in the returned list. * @return an immutable list containing only the specified object. * @since 1.3 */ public static <T> List<T> singletonList(T o) { return new SingletonList<>(o); } /** * @serial include */ private static class SingletonList<E> extends AbstractList<E> implements RandomAccess, Serializable { private static final long serialVersionUID = 3093736618740652951L; private final E element; SingletonList(E obj) {element = obj;} public Iterator<E> iterator() { return singletonIterator(element); } public int size() { return 1 ;} public boolean contains(Object obj) { return eq(obj, element);} public E get( int index) { if (index != 0 ) throw new IndexOutOfBoundsException( "Index: " +index+ ", Size: 1" ); return element; } // Override default methods for Collection @Override public void forEach(Consumer<? super E> action) { action.accept(element); } @Override public boolean removeIf(Predicate<? super E> filter) { throw new UnsupportedOperationException(); } @Override public void replaceAll(UnaryOperator<E> operator) { throw new UnsupportedOperationException(); } @Override public void sort(Comparator<? super E> c) { } @Override public Spliterator<E> spliterator() { return singletonSpliterator(element); } } /** * Returns an immutable map, mapping only the specified key to the * specified value. The returned map is serializable. * * @param <K> the class of the map keys * @param <V> the class of the map values * @param key the sole key to be stored in the returned map. * @param value the value to which the returned map maps <tt>key</tt>. * @return an immutable map containing only the specified key-value * mapping. * @since 1.3 */ public static <K,V> Map<K,V> singletonMap(K key, V value) { return new SingletonMap<>(key, value); } /** * @serial include */ private static class SingletonMap<K,V> extends AbstractMap<K,V> implements Serializable { private static final long serialVersionUID = -6979724477215052911L; private final K k; private final V v; SingletonMap(K key, V value) { k = key; v = value; } public int size() { return 1 ;} public boolean isEmpty() { return false ;} public boolean containsKey(Object key) { return eq(key, k);} public boolean containsValue(Object value) { return eq(value, v);} public V get(Object key) { return (eq(key, k) ? v : null );} private transient Set<K> keySet; private transient Set<Map.Entry<K,V>> entrySet; private transient Collection<V> values; public Set<K> keySet() { if (keySet== null ) keySet = singleton(k); return keySet; } public Set<Map.Entry<K,V>> entrySet() { if (entrySet== null ) entrySet = Collections.<Map.Entry<K,V>>singleton( new SimpleImmutableEntry<>(k, v)); return entrySet; } public Collection<V> values() { if (values== null ) values = singleton(v); return values; } // Override default methods in Map @Override public V getOrDefault(Object key, V defaultValue) { return eq(key, k) ? v : defaultValue; } @Override public void forEach(BiConsumer<? super K, ? super V> action) { action.accept(k, v); } @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { throw new UnsupportedOperationException(); } @Override public V putIfAbsent(K key, V value) { throw new UnsupportedOperationException(); } @Override public boolean remove(Object key, Object value) { throw new UnsupportedOperationException(); } @Override public boolean replace(K key, V oldValue, V newValue) { throw new UnsupportedOperationException(); } @Override public V replace(K key, V value) { throw new UnsupportedOperationException(); } @Override public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { throw new UnsupportedOperationException(); } @Override public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { throw new UnsupportedOperationException(); } @Override public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { throw new UnsupportedOperationException(); } @Override public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { throw new UnsupportedOperationException(); } } // Miscellaneous /** * Returns an immutable list consisting of <tt>n</tt> copies of the * specified object. The newly allocated data object is tiny (it contains * a single reference to the data object). This method is useful in * combination with the <tt>List.addAll</tt> method to grow lists. * The returned list is serializable. * * @param <T> the class of the object to copy and of the objects * in the returned list. * @param n the number of elements in the returned list. * @param o the element to appear repeatedly in the returned list. * @return an immutable list consisting of <tt>n</tt> copies of the * specified object. * @throws IllegalArgumentException if {@code n < 0} * @see List#addAll(Collection) * @see List#addAll(int, Collection) */ public static <T> List<T> nCopies( int n, T o) { if (n < 0 ) throw new IllegalArgumentException( "List length = " + n); return new CopiesList<>(n, o); } /** * @serial include */ private static class CopiesList<E> extends AbstractList<E> implements RandomAccess, Serializable { private static final long serialVersionUID = 2739099268398711800L; final int n; final E element; CopiesList( int n, E e) { assert n >= 0 ; this .n = n; element = e; } public int size() { return n; } public boolean contains(Object obj) { return n != 0 && eq(obj, element); } public int indexOf(Object o) { return contains(o) ? 0 : - 1 ; } public int lastIndexOf(Object o) { return contains(o) ? n - 1 : - 1 ; } public E get( int index) { if (index < 0 || index >= n) throw new IndexOutOfBoundsException( "Index: " +index+ ", Size: " +n); return element; } public Object[] toArray() { final Object[] a = new Object[n]; if (element != null ) Arrays.fill(a, 0 , n, element); return a; } @SuppressWarnings ( "unchecked" ) public <T> T[] toArray(T[] a) { final int n = this .n; if (a.length < n) { a = (T[])java.lang.reflect.Array .newInstance(a.getClass().getComponentType(), n); if (element != null ) Arrays.fill(a, 0 , n, element); } else { Arrays.fill(a, 0 , n, element); if (a.length > n) a[n] = null ; } return a; } public List<E> subList( int fromIndex, int toIndex) { if (fromIndex < 0 ) throw new IndexOutOfBoundsException( "fromIndex = " + fromIndex); if (toIndex > n) throw new IndexOutOfBoundsException( "toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException( "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")" ); return new CopiesList<>(toIndex - fromIndex, element); } // Override default methods in Collection @Override public Stream<E> stream() { return IntStream.range( 0 , n).mapToObj(i -> element); } @Override public Stream<E> parallelStream() { return IntStream.range( 0 , n).parallel().mapToObj(i -> element); } @Override public Spliterator<E> spliterator() { return stream().spliterator(); } } /** * Returns a comparator that imposes the reverse of the <em>natural * ordering</em> on a collection of objects that implement the * {@code Comparable} interface. (The natural ordering is the ordering * imposed by the objects' own {@code compareTo} method.) This enables a * simple idiom for sorting (or maintaining) collections (or arrays) of * objects that implement the {@code Comparable} interface in * reverse-natural-order. For example, suppose {@code a} is an array of * strings. Then: <pre> * Arrays.sort(a, Collections.reverseOrder()); * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p> * * The returned comparator is serializable. * * @param <T> the class of the objects compared by the comparator * @return A comparator that imposes the reverse of the <i>natural * ordering</i> on a collection of objects that implement * the <tt>Comparable</tt> interface. * @see Comparable */ @SuppressWarnings ( "unchecked" ) public static <T> Comparator<T> reverseOrder() { return (Comparator<T>) ReverseComparator.REVERSE_ORDER; } /** * @serial include */ private static class ReverseComparator implements Comparator<Comparable<Object>>, Serializable { private static final long serialVersionUID = 7207038068494060240L; static final ReverseComparator REVERSE_ORDER = new ReverseComparator(); public int compare(Comparable<Object> c1, Comparable<Object> c2) { return c2.compareTo(c1); } private Object readResolve() { return Collections.reverseOrder(); } @Override public Comparator<Comparable<Object>> reversed() { return Comparator.naturalOrder(); } } /** * Returns a comparator that imposes the reverse ordering of the specified * comparator. If the specified comparator is {@code null}, this method is * equivalent to {@link #reverseOrder()} (in other words, it returns a * comparator that imposes the reverse of the <em>natural ordering</em> on * a collection of objects that implement the Comparable interface). * * <p>The returned comparator is serializable (assuming the specified * comparator is also serializable or {@code null}). * * @param <T> the class of the objects compared by the comparator * @param cmp a comparator who's ordering is to be reversed by the returned * comparator or {@code null} * @return A comparator that imposes the reverse ordering of the * specified comparator. * @since 1.5 */ public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) { if (cmp == null ) return reverseOrder(); if (cmp instanceof ReverseComparator2) return ((ReverseComparator2<T>)cmp).cmp; return new ReverseComparator2<>(cmp); } /** * @serial include */ private static class ReverseComparator2<T> implements Comparator<T>, Serializable { private static final long serialVersionUID = 4374092139857L; /** * The comparator specified in the static factory. This will never * be null, as the static factory returns a ReverseComparator * instance if its argument is null. * * @serial */ final Comparator<T> cmp; ReverseComparator2(Comparator<T> cmp) { assert cmp != null ; this .cmp = cmp; } public int compare(T t1, T t2) { return cmp.compare(t2, t1); } public boolean equals(Object o) { return (o == this ) || (o instanceof ReverseComparator2 && cmp.equals(((ReverseComparator2)o).cmp)); } public int hashCode() { return cmp.hashCode() ^ Integer.MIN_VALUE; } @Override public Comparator<T> reversed() { return cmp; } } /** * Returns an enumeration over the specified collection. This provides * interoperability with legacy APIs that require an enumeration * as input. * * @param <T> the class of the objects in the collection * @param c the collection for which an enumeration is to be returned. * @return an enumeration over the specified collection. * @see Enumeration */ public static <T> Enumeration<T> enumeration( final Collection<T> c) { return new Enumeration<T>() { private final Iterator<T> i = c.iterator(); public boolean hasMoreElements() { return i.hasNext(); } public T nextElement() { return i.next(); } }; } /** * Returns an array list containing the elements returned by the * specified enumeration in the order they are returned by the * enumeration. This method provides interoperability between * legacy APIs that return enumerations and new APIs that require * collections. * * @param <T> the class of the objects returned by the enumeration * @param e enumeration providing elements for the returned * array list * @return an array list containing the elements returned * by the specified enumeration. * @since 1.4 * @see Enumeration * @see ArrayList */ public static <T> ArrayList<T> list(Enumeration<T> e) { ArrayList<T> l = new ArrayList<>(); while (e.hasMoreElements()) l.add(e.nextElement()); return l; } /** * Returns true if the specified arguments are equal, or both null. * * NB: Do not replace with Object.equals until JDK-8015417 is resolved. */ static boolean eq(Object o1, Object o2) { return o1== null ? o2== null : o1.equals(o2); } /** * Returns the number of elements in the specified collection equal to the * specified object. More formally, returns the number of elements * <tt>e</tt> in the collection such that * <tt>(o == null ? e == null : o.equals(e))</tt>. * * @param c the collection in which to determine the frequency * of <tt>o</tt> * @param o the object whose frequency is to be determined * @return the number of elements in {@code c} equal to {@code o} * @throws NullPointerException if <tt>c</tt> is null * @since 1.5 */ public static int frequency(Collection<?> c, Object o) { int result = 0 ; if (o == null ) { for (Object e : c) if (e == null ) result++; } else { for (Object e : c) if (o.equals(e)) result++; } return result; } /** * Returns {@code true} if the two specified collections have no * elements in common. * * <p>Care must be exercised if this method is used on collections that * do not comply with the general contract for {@code Collection}. * Implementations may elect to iterate over either collection and test * for containment in the other collection (or to perform any equivalent * computation). If either collection uses a nonstandard equality test * (as does a {@link SortedSet} whose ordering is not <em>compatible with * equals</em>, or the key set of an {@link IdentityHashMap}), both * collections must use the same nonstandard equality test, or the * result of this method is undefined. * * <p>Care must also be exercised when using collections that have * restrictions on the elements that they may contain. Collection * implementations are allowed to throw exceptions for any operation * involving elements they deem ineligible. For absolute safety the * specified collections should contain only elements which are * eligible elements for both collections. * * <p>Note that it is permissible to pass the same collection in both * parameters, in which case the method will return {@code true} if and * only if the collection is empty. * * @param c1 a collection * @param c2 a collection * @return {@code true} if the two specified collections have no * elements in common. * @throws NullPointerException if either collection is {@code null}. * @throws NullPointerException if one collection contains a {@code null} * element and {@code null} is not an eligible element for the other collection. * (<a href="Collection.html#optional-restrictions">optional</a>) * @throws ClassCastException if one collection contains an element that is * of a type which is ineligible for the other collection. * (<a href="Collection.html#optional-restrictions">optional</a>) * @since 1.5 */ public static boolean disjoint(Collection<?> c1, Collection<?> c2) { // The collection to be used for contains(). Preference is given to // the collection who's contains() has lower O() complexity. Collection<?> contains = c2; // The collection to be iterated. If the collections' contains() impl // are of different O() complexity, the collection with slower // contains() will be used for iteration. For collections who's // contains() are of the same complexity then best performance is // achieved by iterating the smaller collection. Collection<?> iterate = c1; // Performance optimization cases. The heuristics: // 1. Generally iterate over c1. // 2. If c1 is a Set then iterate over c2. // 3. If either collection is empty then result is always true. // 4. Iterate over the smaller Collection. if (c1 instanceof Set) { // Use c1 for contains as a Set's contains() is expected to perform // better than O(N/2) iterate = c2; contains = c1; } else if (!(c2 instanceof Set)) { // Both are mere Collections. Iterate over smaller collection. // Example: If c1 contains 3 elements and c2 contains 50 elements and // assuming contains() requires ceiling(N/2) comparisons then // checking for all c1 elements in c2 would require 75 comparisons // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring // 100 comparisons (50 * ceiling(3/2)). int c1size = c1.size(); int c2size = c2.size(); if (c1size == 0 || c2size == 0 ) { // At least one collection is empty. Nothing will match. return true ; } if (c1size > c2size) { iterate = c2; contains = c1; } } for (Object e : iterate) { if (contains.contains(e)) { // Found a common element. Collections are not disjoint. return false ; } } // No common elements were found. return true ; } /** * Adds all of the specified elements to the specified collection. * Elements to be added may be specified individually or as an array. * The behavior of this convenience method is identical to that of * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely * to run significantly faster under most implementations. * * <p>When elements are specified individually, this method provides a * convenient way to add a few elements to an existing collection: * <pre> * Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon"); * </pre> * * @param <T> the class of the elements to add and of the collection * @param c the collection into which <tt>elements</tt> are to be inserted * @param elements the elements to insert into <tt>c</tt> * @return <tt>true</tt> if the collection changed as a result of the call * @throws UnsupportedOperationException if <tt>c</tt> does not support * the <tt>add</tt> operation * @throws NullPointerException if <tt>elements</tt> contains one or more * null values and <tt>c</tt> does not permit null elements, or * if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt> * @throws IllegalArgumentException if some property of a value in * <tt>elements</tt> prevents it from being added to <tt>c</tt> * @see Collection#addAll(Collection) * @since 1.5 */ @SafeVarargs public static <T> boolean addAll(Collection<? super T> c, T... elements) { boolean result = false ; for (T element : elements) result |= c.add(element); return result; } /** * Returns a set backed by the specified map. The resulting set displays * the same ordering, concurrency, and performance characteristics as the * backing map. In essence, this factory method provides a {@link Set} * implementation corresponding to any {@link Map} implementation. There * is no need to use this method on a {@link Map} implementation that * already has a corresponding {@link Set} implementation (such as {@link * HashMap} or {@link TreeMap}). * * <p>Each method invocation on the set returned by this method results in * exactly one method invocation on the backing map or its <tt>keySet</tt> * view, with one exception. The <tt>addAll</tt> method is implemented * as a sequence of <tt>put</tt> invocations on the backing map. * * <p>The specified map must be empty at the time this method is invoked, * and should not be accessed directly after this method returns. These * conditions are ensured if the map is created empty, passed directly * to this method, and no reference to the map is retained, as illustrated * in the following code fragment: * <pre> * Set<Object> weakHashSet = Collections.newSetFromMap( * new WeakHashMap<Object, Boolean>()); * </pre> * * @param <E> the class of the map keys and of the objects in the * returned set * @param map the backing map * @return the set backed by the map * @throws IllegalArgumentException if <tt>map</tt> is not empty * @since 1.6 */ public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { return new SetFromMap<>(map); } /** * @serial include */ private static class SetFromMap<E> extends AbstractSet<E> implements Set<E>, Serializable { private final Map<E, Boolean> m; // The backing map private transient Set<E> s; // Its keySet SetFromMap(Map<E, Boolean> map) { if (!map.isEmpty()) throw new IllegalArgumentException( "Map is non-empty" ); m = map; s = map.keySet(); } public void clear() { m.clear(); } public int size() { return m.size(); } public boolean isEmpty() { return m.isEmpty(); } public boolean contains(Object o) { return m.containsKey(o); } public boolean remove(Object o) { return m.remove(o) != null ; } public boolean add(E e) { return m.put(e, Boolean.TRUE) == null ; } public Iterator<E> iterator() { return s.iterator(); } public Object[] toArray() { return s.toArray(); } public <T> T[] toArray(T[] a) { return s.toArray(a); } public String toString() { return s.toString(); } public int hashCode() { return s.hashCode(); } public boolean equals(Object o) { return o == this || s.equals(o); } public boolean containsAll(Collection<?> c) { return s.containsAll(c);} public boolean removeAll(Collection<?> c) { return s.removeAll(c);} public boolean retainAll(Collection<?> c) { return s.retainAll(c);} // addAll is the only inherited implementation // Override default methods in Collection @Override public void forEach(Consumer<? super E> action) { s.forEach(action); } @Override public boolean removeIf(Predicate<? super E> filter) { return s.removeIf(filter); } @Override public Spliterator<E> spliterator() { return s.spliterator();} @Override public Stream<E> stream() { return s.stream();} @Override public Stream<E> parallelStream() { return s.parallelStream();} private static final long serialVersionUID = 2454657854757543876L; private void readObject(java.io.ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); s = m.keySet(); } } /** * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo) * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>, * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This * view can be useful when you would like to use a method * requiring a <tt>Queue</tt> but you need Lifo ordering. * * <p>Each method invocation on the queue returned by this method * results in exactly one method invocation on the backing deque, with * one exception. The {@link Queue#addAll addAll} method is * implemented as a sequence of {@link Deque#addFirst addFirst} * invocations on the backing deque. * * @param <T> the class of the objects in the deque * @param deque the deque * @return the queue * @since 1.6 */ public static <T> Queue<T> asLifoQueue(Deque<T> deque) { return new AsLIFOQueue<>(deque); } /** * @serial include */ static class AsLIFOQueue<E> extends AbstractQueue<E> implements Queue<E>, Serializable { private static final long serialVersionUID = 1802017725587941708L; private final Deque<E> q; AsLIFOQueue(Deque<E> q) { this .q = q; } public boolean add(E e) { q.addFirst(e); return true ; } public boolean offer(E e) { return q.offerFirst(e); } public E poll() { return q.pollFirst(); } public E remove() { return q.removeFirst(); } public E peek() { return q.peekFirst(); } public E element() { return q.getFirst(); } public void clear() { q.clear(); } public int size() { return q.size(); } public boolean isEmpty() { return q.isEmpty(); } public boolean contains(Object o) { return q.contains(o); } public boolean remove(Object o) { return q.remove(o); } public Iterator<E> iterator() { return q.iterator(); } public Object[] toArray() { return q.toArray(); } public <T> T[] toArray(T[] a) { return q.toArray(a); } public String toString() { return q.toString(); } public boolean containsAll(Collection<?> c) { return q.containsAll(c);} public boolean removeAll(Collection<?> c) { return q.removeAll(c);} public boolean retainAll(Collection<?> c) { return q.retainAll(c);} // We use inherited addAll; forwarding addAll would be wrong // Override default methods in Collection @Override public void forEach(Consumer<? super E> action) {q.forEach(action);} @Override public boolean removeIf(Predicate<? super E> filter) { return q.removeIf(filter); } @Override public Spliterator<E> spliterator() { return q.spliterator();} @Override public Stream<E> stream() { return q.stream();} @Override public Stream<E> parallelStream() { return q.parallelStream();} } } |
#######################
QQ 3087438119
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~
2021-11-18 protobuf编译
2021-11-18 C# sqlite执行sql
2020-11-18 qwebchannel.js
2020-11-18 IfcMappedItem——Air terminal element
2019-11-18 无线局域网适配器 本地连接