java Math.pow

Math.pow

/**
     * Returns the value of the first argument raised to the power of the
     * second argument. Special cases:
     *
     * <ul><li>If the second argument is positive or negative zero, then the
     * result is 1.0.
     * <li>If the second argument is 1.0, then the result is the same as the
     * first argument.
     * <li>If the second argument is NaN, then the result is NaN.
     * <li>If the first argument is NaN and the second argument is nonzero,
     * then the result is NaN.
     *
     * <li>If
     * <ul>
     * <li>the absolute value of the first argument is greater than 1
     * and the second argument is positive infinity, or
     * <li>the absolute value of the first argument is less than 1 and
     * the second argument is negative infinity,
     * </ul>
     * then the result is positive infinity.
     *
     * <li>If
     * <ul>
     * <li>the absolute value of the first argument is greater than 1 and
     * the second argument is negative infinity, or
     * <li>the absolute value of the
     * first argument is less than 1 and the second argument is positive
     * infinity,
     * </ul>
     * then the result is positive zero.
     *
     * <li>If the absolute value of the first argument equals 1 and the
     * second argument is infinite, then the result is NaN.
     *
     * <li>If
     * <ul>
     * <li>the first argument is positive zero and the second argument
     * is greater than zero, or
     * <li>the first argument is positive infinity and the second
     * argument is less than zero,
     * </ul>
     * then the result is positive zero.
     *
     * <li>If
     * <ul>
     * <li>the first argument is positive zero and the second argument
     * is less than zero, or
     * <li>the first argument is positive infinity and the second
     * argument is greater than zero,
     * </ul>
     * then the result is positive infinity.
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is greater than zero but not a finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is less than zero but not a finite odd integer,
     * </ul>
     * then the result is positive zero.
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is a positive finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is a negative finite odd integer,
     * </ul>
     * then the result is negative zero.
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is less than zero but not a finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is greater than zero but not a finite odd integer,
     * </ul>
     * then the result is positive infinity.
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is a negative finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is a positive finite odd integer,
     * </ul>
     * then the result is negative infinity.
     *
     * <li>If the first argument is finite and less than zero
     * <ul>
     * <li> if the second argument is a finite even integer, the
     * result is equal to the result of raising the absolute value of
     * the first argument to the power of the second argument
     *
     * <li>if the second argument is a finite odd integer, the result
     * is equal to the negative of the result of raising the absolute
     * value of the first argument to the power of the second
     * argument
     *
     * <li>if the second argument is finite and not an integer, then
     * the result is NaN.
     * </ul>
     *
     * <li>If both arguments are integers, then the result is exactly equal
     * to the mathematical result of raising the first argument to the power
     * of the second argument if that result can in fact be represented
     * exactly as a {@code double} value.</ul>
     *
     * <p>(In the foregoing descriptions, a floating-point value is
     * considered to be an integer if and only if it is finite and a
     * fixed point of the method {@link #ceil ceil} or,
     * equivalently, a fixed point of the method {@link #floor
     * floor}. A value is a fixed point of a one-argument
     * method if and only if the result of applying the method to the
     * value is equal to the value.)
     *
     * <p>The computed result must be within 1 ulp of the exact result.
     * Results must be semi-monotonic.
     *
     * @param   a   the base.
     * @param   b   the exponent.
     * @return  the value {@code a}<sup>{@code b}</sup>.
     */
    public static double pow(double a, double b) {
        return StrictMath.pow(a, b); // default impl. delegates to StrictMath
    }

 

 

 

 

 

 

#################################

posted @ 2021-11-27 07:56  西北逍遥  阅读(176)  评论(0编辑  收藏  举报