QVector
QVector
/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the QtCore module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #ifndef QVECTOR_H #define QVECTOR_H #include <QtCore/qalgorithms.h> #include <QtCore/qiterator.h> #include <QtCore/qlist.h> #include <QtCore/qrefcount.h> #include <QtCore/qarraydata.h> #include <QtCore/qhashfunctions.h> #include <iterator> #include <vector> #include <stdlib.h> #include <string.h> #ifdef Q_COMPILER_INITIALIZER_LISTS #include <initializer_list> #endif #include <algorithm> QT_BEGIN_NAMESPACE template <typename T> class QVector { typedef QTypedArrayData<T> Data; Data *d; public: inline QVector() Q_DECL_NOTHROW : d(Data::sharedNull()) { } explicit QVector(int size); QVector(int size, const T &t); inline QVector(const QVector<T> &v); inline ~QVector() { if (!d->ref.deref()) freeData(d); } QVector<T> &operator=(const QVector<T> &v); #if defined(Q_COMPILER_RVALUE_REFS) || defined(Q_CLANG_QDOC) QVector(QVector<T> &&other) Q_DECL_NOTHROW : d(other.d) { other.d = Data::sharedNull(); } QVector<T> &operator=(QVector<T> &&other) Q_DECL_NOTHROW { QVector moved(std::move(other)); swap(moved); return *this; } #endif void swap(QVector<T> &other) Q_DECL_NOTHROW { qSwap(d, other.d); } #ifdef Q_COMPILER_INITIALIZER_LISTS inline QVector(std::initializer_list<T> args); #endif bool operator==(const QVector<T> &v) const; inline bool operator!=(const QVector<T> &v) const { return !(*this == v); } inline int size() const { return d->size; } inline bool isEmpty() const { return d->size == 0; } void resize(int size); inline int capacity() const { return int(d->alloc); } void reserve(int size); inline void squeeze() { reallocData(d->size, d->size); if (d->capacityReserved) { // capacity reserved in a read only memory would be useless // this checks avoid writing to such memory. d->capacityReserved = 0; } } inline void detach(); inline bool isDetached() const { return !d->ref.isShared(); } #if !defined(QT_NO_UNSHARABLE_CONTAINERS) inline void setSharable(bool sharable) { if (sharable == d->ref.isSharable()) return; if (!sharable) detach(); if (d == Data::unsharableEmpty()) { if (sharable) d = Data::sharedNull(); } else { d->ref.setSharable(sharable); } Q_ASSERT(d->ref.isSharable() == sharable); } #endif inline bool isSharedWith(const QVector<T> &other) const { return d == other.d; } inline T *data() { detach(); return d->begin(); } inline const T *data() const { return d->begin(); } inline const T *constData() const { return d->begin(); } void clear(); const T &at(int i) const; T &operator[](int i); const T &operator[](int i) const; void append(const T &t); #if defined(Q_COMPILER_RVALUE_REFS) || defined(Q_CLANG_QDOC) void append(T &&t); #endif inline void append(const QVector<T> &l) { *this += l; } void prepend(T &&t); void prepend(const T &t); void insert(int i, T &&t); void insert(int i, const T &t); void insert(int i, int n, const T &t); void replace(int i, const T &t); void remove(int i); void remove(int i, int n); inline void removeFirst() { Q_ASSERT(!isEmpty()); erase(d->begin()); } inline void removeLast(); T takeFirst() { Q_ASSERT(!isEmpty()); T r = std::move(first()); removeFirst(); return r; } T takeLast() { Q_ASSERT(!isEmpty()); T r = std::move(last()); removeLast(); return r; } QVector<T> &fill(const T &t, int size = -1); int indexOf(const T &t, int from = 0) const; int lastIndexOf(const T &t, int from = -1) const; bool contains(const T &t) const; int count(const T &t) const; // QList compatibility void removeAt(int i) { remove(i); } int removeAll(const T &t) { const const_iterator ce = this->cend(), cit = std::find(this->cbegin(), ce, t); if (cit == ce) return 0; // next operation detaches, so ce, cit, t may become invalidated: const T tCopy = t; const int firstFoundIdx = std::distance(this->cbegin(), cit); const iterator e = end(), it = std::remove(begin() + firstFoundIdx, e, tCopy); const int result = std::distance(it, e); erase(it, e); return result; } bool removeOne(const T &t) { const int i = indexOf(t); if (i < 0) return false; remove(i); return true; } int length() const { return size(); } T takeAt(int i) { T t = std::move((*this)[i]); remove(i); return t; } void move(int from, int to) { Q_ASSERT_X(from >= 0 && from < size(), "QVector::move(int,int)", "'from' is out-of-range"); Q_ASSERT_X(to >= 0 && to < size(), "QVector::move(int,int)", "'to' is out-of-range"); if (from == to) // don't detach when no-op return; detach(); T * const b = d->begin(); if (from < to) std::rotate(b + from, b + from + 1, b + to + 1); else std::rotate(b + to, b + from, b + from + 1); } // STL-style typedef typename Data::iterator iterator; typedef typename Data::const_iterator const_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; #if !defined(QT_STRICT_ITERATORS) || defined(Q_CLANG_QDOC) inline iterator begin() { detach(); return d->begin(); } inline const_iterator begin() const Q_DECL_NOTHROW { return d->constBegin(); } inline const_iterator cbegin() const Q_DECL_NOTHROW { return d->constBegin(); } inline const_iterator constBegin() const Q_DECL_NOTHROW { return d->constBegin(); } inline iterator end() { detach(); return d->end(); } inline const_iterator end() const Q_DECL_NOTHROW { return d->constEnd(); } inline const_iterator cend() const Q_DECL_NOTHROW { return d->constEnd(); } inline const_iterator constEnd() const Q_DECL_NOTHROW { return d->constEnd(); } #else inline iterator begin(iterator = iterator()) { detach(); return d->begin(); } inline const_iterator begin(const_iterator = const_iterator()) const Q_DECL_NOTHROW { return d->constBegin(); } inline const_iterator cbegin(const_iterator = const_iterator()) const Q_DECL_NOTHROW { return d->constBegin(); } inline const_iterator constBegin(const_iterator = const_iterator()) const Q_DECL_NOTHROW { return d->constBegin(); } inline iterator end(iterator = iterator()) { detach(); return d->end(); } inline const_iterator end(const_iterator = const_iterator()) const Q_DECL_NOTHROW { return d->constEnd(); } inline const_iterator cend(const_iterator = const_iterator()) const Q_DECL_NOTHROW { return d->constEnd(); } inline const_iterator constEnd(const_iterator = const_iterator()) const Q_DECL_NOTHROW { return d->constEnd(); } #endif reverse_iterator rbegin() { return reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rbegin() const Q_DECL_NOTHROW { return const_reverse_iterator(end()); } const_reverse_iterator rend() const Q_DECL_NOTHROW { return const_reverse_iterator(begin()); } const_reverse_iterator crbegin() const Q_DECL_NOTHROW { return const_reverse_iterator(end()); } const_reverse_iterator crend() const Q_DECL_NOTHROW { return const_reverse_iterator(begin()); } iterator insert(iterator before, int n, const T &x); inline iterator insert(iterator before, const T &x) { return insert(before, 1, x); } inline iterator insert(iterator before, T &&x); iterator erase(iterator begin, iterator end); inline iterator erase(iterator pos) { return erase(pos, pos+1); } // more Qt inline int count() const { return d->size; } inline T& first() { Q_ASSERT(!isEmpty()); return *begin(); } inline const T &first() const { Q_ASSERT(!isEmpty()); return *begin(); } inline const T &constFirst() const { Q_ASSERT(!isEmpty()); return *begin(); } inline T& last() { Q_ASSERT(!isEmpty()); return *(end()-1); } inline const T &last() const { Q_ASSERT(!isEmpty()); return *(end()-1); } inline const T &constLast() const { Q_ASSERT(!isEmpty()); return *(end()-1); } inline bool startsWith(const T &t) const { return !isEmpty() && first() == t; } inline bool endsWith(const T &t) const { return !isEmpty() && last() == t; } QVector<T> mid(int pos, int len = -1) const; T value(int i) const; T value(int i, const T &defaultValue) const; // STL compatibility typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef qptrdiff difference_type; typedef iterator Iterator; typedef const_iterator ConstIterator; typedef int size_type; inline void push_back(const T &t) { append(t); } #if defined(Q_COMPILER_RVALUE_REFS) || defined(Q_CLANG_QDOC) void push_back(T &&t) { append(std::move(t)); } void push_front(T &&t) { prepend(std::move(t)); } #endif inline void push_front(const T &t) { prepend(t); } void pop_back() { removeLast(); } void pop_front() { removeFirst(); } inline bool empty() const { return d->size == 0; } inline T& front() { return first(); } inline const_reference front() const { return first(); } inline reference back() { return last(); } inline const_reference back() const { return last(); } void shrink_to_fit() { squeeze(); } // comfort QVector<T> &operator+=(const QVector<T> &l); inline QVector<T> operator+(const QVector<T> &l) const { QVector n = *this; n += l; return n; } inline QVector<T> &operator+=(const T &t) { append(t); return *this; } inline QVector<T> &operator<< (const T &t) { append(t); return *this; } inline QVector<T> &operator<<(const QVector<T> &l) { *this += l; return *this; } inline QVector<T> &operator+=(T &&t) { append(std::move(t)); return *this; } inline QVector<T> &operator<<(T &&t) { append(std::move(t)); return *this; } QList<T> toList() const; static QVector<T> fromList(const QList<T> &list); static inline QVector<T> fromStdVector(const std::vector<T> &vector) { QVector<T> tmp; tmp.reserve(int(vector.size())); std::copy(vector.begin(), vector.end(), std::back_inserter(tmp)); return tmp; } inline std::vector<T> toStdVector() const { return std::vector<T>(d->begin(), d->end()); } private: // ### Qt6: remove const from int parameters void reallocData(const int size, const int alloc, QArrayData::AllocationOptions options = QArrayData::Default); void reallocData(const int sz) { reallocData(sz, d->alloc); } void freeData(Data *d); void defaultConstruct(T *from, T *to); void copyConstruct(const T *srcFrom, const T *srcTo, T *dstFrom); void destruct(T *from, T *to); bool isValidIterator(const iterator &i) const { const std::less<const T*> less = {}; return !less(d->end(), i) && !less(i, d->begin()); } class AlignmentDummy { Data header; T array[1]; }; }; #ifdef Q_CC_MSVC // behavior change: an object of POD type constructed with an initializer of the form () // will be default-initialized # pragma warning ( push ) # pragma warning ( disable : 4345 ) # pragma warning(disable : 4127) // conditional expression is constant #endif template <typename T> void QVector<T>::defaultConstruct(T *from, T *to) { if (QTypeInfo<T>::isComplex) { while (from != to) { new (from++) T(); } } else { ::memset(static_cast<void *>(from), 0, (to - from) * sizeof(T)); } } template <typename T> void QVector<T>::copyConstruct(const T *srcFrom, const T *srcTo, T *dstFrom) { if (QTypeInfo<T>::isComplex) { while (srcFrom != srcTo) new (dstFrom++) T(*srcFrom++); } else { ::memcpy(static_cast<void *>(dstFrom), static_cast<const void *>(srcFrom), (srcTo - srcFrom) * sizeof(T)); } } template <typename T> void QVector<T>::destruct(T *from, T *to) { if (QTypeInfo<T>::isComplex) { while (from != to) { from++->~T(); } } } template <typename T> inline QVector<T>::QVector(const QVector<T> &v) { if (v.d->ref.ref()) { d = v.d; } else { if (v.d->capacityReserved) { d = Data::allocate(v.d->alloc); Q_CHECK_PTR(d); d->capacityReserved = true; } else { d = Data::allocate(v.d->size); Q_CHECK_PTR(d); } if (d->alloc) { copyConstruct(v.d->begin(), v.d->end(), d->begin()); d->size = v.d->size; } } } #if defined(Q_CC_MSVC) #pragma warning( pop ) #endif template <typename T> void QVector<T>::detach() { if (!isDetached()) { #if !defined(QT_NO_UNSHARABLE_CONTAINERS) if (!d->alloc) d = Data::unsharableEmpty(); else #endif reallocData(d->size, int(d->alloc)); } Q_ASSERT(isDetached()); } template <typename T> void QVector<T>::reserve(int asize) { if (asize > int(d->alloc)) reallocData(d->size, asize); if (isDetached() #if !defined(QT_NO_UNSHARABLE_CONTAINERS) && d != Data::unsharableEmpty() #endif ) d->capacityReserved = 1; Q_ASSERT(capacity() >= asize); } template <typename T> void QVector<T>::resize(int asize) { int newAlloc; const int oldAlloc = int(d->alloc); QArrayData::AllocationOptions opt; if (asize > oldAlloc) { // there is not enough space newAlloc = asize; opt = QArrayData::Grow; } else { newAlloc = oldAlloc; } reallocData(asize, newAlloc, opt); } template <typename T> inline void QVector<T>::clear() { resize(0); } template <typename T> inline const T &QVector<T>::at(int i) const { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::at", "index out of range"); return d->begin()[i]; } template <typename T> inline const T &QVector<T>::operator[](int i) const { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::operator[]", "index out of range"); return d->begin()[i]; } template <typename T> inline T &QVector<T>::operator[](int i) { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::operator[]", "index out of range"); return data()[i]; } template <typename T> inline void QVector<T>::insert(int i, const T &t) { Q_ASSERT_X(i >= 0 && i <= d->size, "QVector<T>::insert", "index out of range"); insert(begin() + i, 1, t); } template <typename T> inline void QVector<T>::insert(int i, int n, const T &t) { Q_ASSERT_X(i >= 0 && i <= d->size, "QVector<T>::insert", "index out of range"); insert(begin() + i, n, t); } template <typename T> inline void QVector<T>::insert(int i, T &&t) { Q_ASSERT_X(i >= 0 && i <= d->size, "QVector<T>::insert", "index out of range"); insert(begin() + i, std::move(t)); } template <typename T> inline void QVector<T>::remove(int i, int n) { Q_ASSERT_X(i >= 0 && n >= 0 && i + n <= d->size, "QVector<T>::remove", "index out of range"); erase(d->begin() + i, d->begin() + i + n); } template <typename T> inline void QVector<T>::remove(int i) { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::remove", "index out of range"); erase(d->begin() + i, d->begin() + i + 1); } template <typename T> inline void QVector<T>::prepend(const T &t) { insert(begin(), 1, t); } template <typename T> inline void QVector<T>::prepend(T &&t) { insert(begin(), std::move(t)); } template <typename T> inline void QVector<T>::replace(int i, const T &t) { Q_ASSERT_X(i >= 0 && i < d->size, "QVector<T>::replace", "index out of range"); const T copy(t); data()[i] = copy; } template <typename T> QVector<T> &QVector<T>::operator=(const QVector<T> &v) { if (v.d != d) { QVector<T> tmp(v); tmp.swap(*this); } return *this; } template <typename T> QVector<T>::QVector(int asize) { Q_ASSERT_X(asize >= 0, "QVector::QVector", "Size must be greater than or equal to 0."); if (Q_LIKELY(asize > 0)) { d = Data::allocate(asize); Q_CHECK_PTR(d); d->size = asize; defaultConstruct(d->begin(), d->end()); } else { d = Data::sharedNull(); } } template <typename T> QVector<T>::QVector(int asize, const T &t) { Q_ASSERT_X(asize >= 0, "QVector::QVector", "Size must be greater than or equal to 0."); if (asize > 0) { d = Data::allocate(asize); Q_CHECK_PTR(d); d->size = asize; T* i = d->end(); while (i != d->begin()) new (--i) T(t); } else { d = Data::sharedNull(); } } #ifdef Q_COMPILER_INITIALIZER_LISTS # if defined(Q_CC_MSVC) QT_WARNING_PUSH QT_WARNING_DISABLE_MSVC(4127) // conditional expression is constant # endif // Q_CC_MSVC template <typename T> QVector<T>::QVector(std::initializer_list<T> args) { if (args.size() > 0) { d = Data::allocate(args.size()); Q_CHECK_PTR(d); // std::initializer_list<T>::iterator is guaranteed to be // const T* ([support.initlist]/1), so can be memcpy'ed away from by copyConstruct copyConstruct(args.begin(), args.end(), d->begin()); d->size = int(args.size()); } else { d = Data::sharedNull(); } } # if defined(Q_CC_MSVC) QT_WARNING_POP # endif // Q_CC_MSVC #endif // Q_COMPILER_INITALIZER_LISTS template <typename T> void QVector<T>::freeData(Data *x) { destruct(x->begin(), x->end()); Data::deallocate(x); } #if defined(Q_CC_MSVC) QT_WARNING_PUSH QT_WARNING_DISABLE_MSVC(4127) // conditional expression is constant #endif template <typename T> void QVector<T>::reallocData(const int asize, const int aalloc, QArrayData::AllocationOptions options) { Q_ASSERT(asize >= 0 && asize <= aalloc); Data *x = d; const bool isShared = d->ref.isShared(); if (aalloc != 0) { if (aalloc != int(d->alloc) || isShared) { QT_TRY { // allocate memory x = Data::allocate(aalloc, options); Q_CHECK_PTR(x); // aalloc is bigger then 0 so it is not [un]sharedEmpty #if !defined(QT_NO_UNSHARABLE_CONTAINERS) Q_ASSERT(x->ref.isSharable() || options.testFlag(QArrayData::Unsharable)); #endif Q_ASSERT(!x->ref.isStatic()); x->size = asize; T *srcBegin = d->begin(); T *srcEnd = asize > d->size ? d->end() : d->begin() + asize; T *dst = x->begin(); if (!QTypeInfoQuery<T>::isRelocatable || (isShared && QTypeInfo<T>::isComplex)) { QT_TRY { if (isShared || !std::is_nothrow_move_constructible<T>::value) { // we can not move the data, we need to copy construct it while (srcBegin != srcEnd) new (dst++) T(*srcBegin++); } else { while (srcBegin != srcEnd) new (dst++) T(std::move(*srcBegin++)); } } QT_CATCH (...) { // destruct already copied objects destruct(x->begin(), dst); QT_RETHROW; } } else { ::memcpy(static_cast<void *>(dst), static_cast<void *>(srcBegin), (srcEnd - srcBegin) * sizeof(T)); dst += srcEnd - srcBegin; // destruct unused / not moved data if (asize < d->size) destruct(d->begin() + asize, d->end()); } if (asize > d->size) { // construct all new objects when growing if (!QTypeInfo<T>::isComplex) { ::memset(static_cast<void *>(dst), 0, (static_cast<T *>(x->end()) - dst) * sizeof(T)); } else { QT_TRY { while (dst != x->end()) new (dst++) T(); } QT_CATCH (...) { // destruct already copied objects destruct(x->begin(), dst); QT_RETHROW; } } } } QT_CATCH (...) { Data::deallocate(x); QT_RETHROW; } x->capacityReserved = d->capacityReserved; } else { Q_ASSERT(int(d->alloc) == aalloc); // resize, without changing allocation size Q_ASSERT(isDetached()); // can be done only on detached d Q_ASSERT(x == d); // in this case we do not need to allocate anything if (asize <= d->size) { destruct(x->begin() + asize, x->end()); // from future end to current end } else { defaultConstruct(x->end(), x->begin() + asize); // from current end to future end } x->size = asize; } } else { x = Data::sharedNull(); } if (d != x) { if (!d->ref.deref()) { if (!QTypeInfoQuery<T>::isRelocatable || !aalloc || (isShared && QTypeInfo<T>::isComplex)) { // data was copy constructed, we need to call destructors // or if !alloc we did nothing to the old 'd'. freeData(d); } else { Data::deallocate(d); } } d = x; } Q_ASSERT(d->data()); Q_ASSERT(uint(d->size) <= d->alloc); #if !defined(QT_NO_UNSHARABLE_CONTAINERS) Q_ASSERT(d != Data::unsharableEmpty()); #endif Q_ASSERT(aalloc ? d != Data::sharedNull() : d == Data::sharedNull()); Q_ASSERT(d->alloc >= uint(aalloc)); Q_ASSERT(d->size == asize); } #if defined(Q_CC_MSVC) QT_WARNING_POP #endif template<typename T> Q_OUTOFLINE_TEMPLATE T QVector<T>::value(int i) const { if (uint(i) >= uint(d->size)) { return T(); } return d->begin()[i]; } template<typename T> Q_OUTOFLINE_TEMPLATE T QVector<T>::value(int i, const T &defaultValue) const { return uint(i) >= uint(d->size) ? defaultValue : d->begin()[i]; } template <typename T> void QVector<T>::append(const T &t) { const bool isTooSmall = uint(d->size + 1) > d->alloc; if (!isDetached() || isTooSmall) { T copy(t); QArrayData::AllocationOptions opt(isTooSmall ? QArrayData::Grow : QArrayData::Default); reallocData(d->size, isTooSmall ? d->size + 1 : d->alloc, opt); if (QTypeInfo<T>::isComplex) new (d->end()) T(qMove(copy)); else *d->end() = qMove(copy); } else { if (QTypeInfo<T>::isComplex) new (d->end()) T(t); else *d->end() = t; } ++d->size; } #ifdef Q_COMPILER_RVALUE_REFS template <typename T> void QVector<T>::append(T &&t) { const bool isTooSmall = uint(d->size + 1) > d->alloc; if (!isDetached() || isTooSmall) { QArrayData::AllocationOptions opt(isTooSmall ? QArrayData::Grow : QArrayData::Default); reallocData(d->size, isTooSmall ? d->size + 1 : d->alloc, opt); } new (d->end()) T(std::move(t)); ++d->size; } #endif template <typename T> void QVector<T>::removeLast() { Q_ASSERT(!isEmpty()); Q_ASSERT(d->alloc); if (!d->ref.isShared()) { --d->size; if (QTypeInfo<T>::isComplex) (d->data() + d->size)->~T(); } else { reallocData(d->size - 1); } } template <typename T> typename QVector<T>::iterator QVector<T>::insert(iterator before, size_type n, const T &t) { Q_ASSERT_X(isValidIterator(before), "QVector::insert", "The specified iterator argument 'before' is invalid"); const auto offset = std::distance(d->begin(), before); if (n != 0) { const T copy(t); if (!isDetached() || d->size + n > int(d->alloc)) reallocData(d->size, d->size + n, QArrayData::Grow); if (!QTypeInfoQuery<T>::isRelocatable) { T *b = d->end(); T *i = d->end() + n; while (i != b) new (--i) T; i = d->end(); T *j = i + n; b = d->begin() + offset; while (i != b) *--j = *--i; i = b+n; while (i != b) *--i = copy; } else { T *b = d->begin() + offset; T *i = b + n; memmove(static_cast<void *>(i), static_cast<const void *>(b), (d->size - offset) * sizeof(T)); while (i != b) new (--i) T(copy); } d->size += n; } return d->begin() + offset; } template <typename T> typename QVector<T>::iterator QVector<T>::insert(iterator before, T &&t) { Q_ASSERT_X(isValidIterator(before), "QVector::insert", "The specified iterator argument 'before' is invalid"); const auto offset = std::distance(d->begin(), before); if (!isDetached() || d->size + 1 > int(d->alloc)) reallocData(d->size, d->size + 1, QArrayData::Grow); if (!QTypeInfoQuery<T>::isRelocatable) { T *i = d->end(); T *j = i + 1; T *b = d->begin() + offset; // The new end-element needs to be constructed, the rest must be move assigned if (i != b) { new (--j) T(std::move(*--i)); while (i != b) *--j = std::move(*--i); *b = std::move(t); } else { new (b) T(std::move(t)); } } else { T *b = d->begin() + offset; memmove(static_cast<void *>(b + 1), static_cast<const void *>(b), (d->size - offset) * sizeof(T)); new (b) T(std::move(t)); } d->size += 1; return d->begin() + offset; } template <typename T> typename QVector<T>::iterator QVector<T>::erase(iterator abegin, iterator aend) { Q_ASSERT_X(isValidIterator(abegin), "QVector::erase", "The specified iterator argument 'abegin' is invalid"); Q_ASSERT_X(isValidIterator(aend), "QVector::erase", "The specified iterator argument 'aend' is invalid"); const auto itemsToErase = aend - abegin; if (!itemsToErase) return abegin; Q_ASSERT(abegin >= d->begin()); Q_ASSERT(aend <= d->end()); Q_ASSERT(abegin <= aend); const auto itemsUntouched = abegin - d->begin(); // FIXME we could do a proper realloc, which copy constructs only needed data. // FIXME we are about to delete data - maybe it is good time to shrink? // FIXME the shrink is also an issue in removeLast, that is just a copy + reduce of this. if (d->alloc) { detach(); abegin = d->begin() + itemsUntouched; aend = abegin + itemsToErase; if (!QTypeInfoQuery<T>::isRelocatable) { iterator moveBegin = abegin + itemsToErase; iterator moveEnd = d->end(); while (moveBegin != moveEnd) { if (QTypeInfo<T>::isComplex) static_cast<T *>(abegin)->~T(); new (abegin++) T(*moveBegin++); } if (abegin < d->end()) { // destroy rest of instances destruct(abegin, d->end()); } } else { destruct(abegin, aend); // QTBUG-53605: static_cast<void *> masks clang errors of the form // error: destination for this 'memmove' call is a pointer to class containing a dynamic class // FIXME maybe use std::is_polymorphic (as soon as allowed) to avoid the memmove memmove(static_cast<void *>(abegin), static_cast<void *>(aend), (d->size - itemsToErase - itemsUntouched) * sizeof(T)); } d->size -= int(itemsToErase); } return d->begin() + itemsUntouched; } template <typename T> bool QVector<T>::operator==(const QVector<T> &v) const { if (d == v.d) return true; if (d->size != v.d->size) return false; const T *vb = v.d->begin(); const T *b = d->begin(); const T *e = d->end(); return std::equal(b, e, QT_MAKE_CHECKED_ARRAY_ITERATOR(vb, v.d->size)); } template <typename T> QVector<T> &QVector<T>::fill(const T &from, int asize) { const T copy(from); resize(asize < 0 ? d->size : asize); if (d->size) { T *i = d->end(); T *b = d->begin(); while (i != b) *--i = copy; } return *this; } template <typename T> QVector<T> &QVector<T>::operator+=(const QVector &l) { if (d == Data::sharedNull()) { *this = l; } else { uint newSize = d->size + l.d->size; const bool isTooSmall = newSize > d->alloc; if (!isDetached() || isTooSmall) { QArrayData::AllocationOptions opt(isTooSmall ? QArrayData::Grow : QArrayData::Default); reallocData(d->size, isTooSmall ? newSize : d->alloc, opt); } if (d->alloc) { T *w = d->begin() + newSize; T *i = l.d->end(); T *b = l.d->begin(); while (i != b) { if (QTypeInfo<T>::isComplex) new (--w) T(*--i); else *--w = *--i; } d->size = newSize; } } return *this; } template <typename T> int QVector<T>::indexOf(const T &t, int from) const { if (from < 0) from = qMax(from + d->size, 0); if (from < d->size) { T* n = d->begin() + from - 1; T* e = d->end(); while (++n != e) if (*n == t) return n - d->begin(); } return -1; } template <typename T> int QVector<T>::lastIndexOf(const T &t, int from) const { if (from < 0) from += d->size; else if (from >= d->size) from = d->size-1; if (from >= 0) { T* b = d->begin(); T* n = d->begin() + from + 1; while (n != b) { if (*--n == t) return n - b; } } return -1; } template <typename T> bool QVector<T>::contains(const T &t) const { const T *b = d->begin(); const T *e = d->end(); return std::find(b, e, t) != e; } template <typename T> int QVector<T>::count(const T &t) const { const T *b = d->begin(); const T *e = d->end(); return int(std::count(b, e, t)); } template <typename T> Q_OUTOFLINE_TEMPLATE QVector<T> QVector<T>::mid(int pos, int len) const { using namespace QtPrivate; switch (QContainerImplHelper::mid(d->size, &pos, &len)) { case QContainerImplHelper::Null: case QContainerImplHelper::Empty: return QVector<T>(); case QContainerImplHelper::Full: return *this; case QContainerImplHelper::Subset: break; } QVector<T> midResult; midResult.reallocData(0, len); T *srcFrom = d->begin() + pos; T *srcTo = d->begin() + pos + len; midResult.copyConstruct(srcFrom, srcTo, midResult.data()); midResult.d->size = len; return midResult; } template <typename T> Q_OUTOFLINE_TEMPLATE QList<T> QVector<T>::toList() const { QList<T> result; result.reserve(size()); for (int i = 0; i < size(); ++i) result.append(at(i)); return result; } template <typename T> Q_OUTOFLINE_TEMPLATE QVector<T> QList<T>::toVector() const { QVector<T> result(size()); for (int i = 0; i < size(); ++i) result[i] = at(i); return result; } template <typename T> QVector<T> QVector<T>::fromList(const QList<T> &list) { return list.toVector(); } template <typename T> QList<T> QList<T>::fromVector(const QVector<T> &vector) { return vector.toList(); } Q_DECLARE_SEQUENTIAL_ITERATOR(Vector) Q_DECLARE_MUTABLE_SEQUENTIAL_ITERATOR(Vector) template <typename T> uint qHash(const QVector<T> &key, uint seed = 0) Q_DECL_NOEXCEPT_EXPR(noexcept(qHashRange(key.cbegin(), key.cend(), seed))) { return qHashRange(key.cbegin(), key.cend(), seed); } template <typename T> bool operator<(const QVector<T> &lhs, const QVector<T> &rhs) Q_DECL_NOEXCEPT_EXPR(noexcept(std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()))) { return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } template <typename T> inline bool operator>(const QVector<T> &lhs, const QVector<T> &rhs) Q_DECL_NOEXCEPT_EXPR(noexcept(lhs < rhs)) { return rhs < lhs; } template <typename T> inline bool operator<=(const QVector<T> &lhs, const QVector<T> &rhs) Q_DECL_NOEXCEPT_EXPR(noexcept(lhs < rhs)) { return !(lhs > rhs); } template <typename T> inline bool operator>=(const QVector<T> &lhs, const QVector<T> &rhs) Q_DECL_NOEXCEPT_EXPR(noexcept(lhs < rhs)) { return !(lhs < rhs); } /* ### Qt 5: ### This needs to be removed for next releases of Qt. It is a workaround for vc++ because ### Qt exports QPolygon and QPolygonF that inherit QVector<QPoint> and ### QVector<QPointF> respectively. */ #ifdef Q_CC_MSVC QT_BEGIN_INCLUDE_NAMESPACE #include <QtCore/qpoint.h> QT_END_INCLUDE_NAMESPACE #ifndef Q_TEMPLATE_EXTERN #if defined(QT_BUILD_CORE_LIB) #define Q_TEMPLATE_EXTERN #else #define Q_TEMPLATE_EXTERN extern #endif #endif Q_TEMPLATE_EXTERN template class Q_CORE_EXPORT QVector<QPointF>; Q_TEMPLATE_EXTERN template class Q_CORE_EXPORT QVector<QPoint>; #endif QVector<uint> QStringView::toUcs4() const { return QtPrivate::convertToUcs4(*this); } QT_END_NAMESPACE #endif // QVECTOR_H
#########################
QQ 3087438119