yolov5 检测图片里面的对象

yolov5 检测图片里面的对象

这是比较早的代码,偶尔碰见了打开看看,运行结果如下:

import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random

import numpy as np

import requests
from models.experimental import attempt_load

from utils.datasets import LoadStreams,LoadStreams2, LoadImages,LoadWebcam,letterbox

from utils.general import check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, \
    xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized


device = select_device('')
augment = False
conf_thres=0.15
iou_thres=0.25
model = attempt_load('yolov5s.pt', map_location=device)
img_size = 640

names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]


def detectionObjectFunction():
    #vc = cv2.VideoCapture(2)
    #rval, frame = vc.read()
    #rval, cameraImg = vc.read()
    img_file = requests.get("http://182.61.200.7/pic/20200621_76_100737/20200621161706340.jpg")
    cameraImg = cv2.imdecode(np.fromstring(img_file.content, np.uint8), 1)
    
    
    img = letterbox(cameraImg, new_shape=img_size)[0]
    # Convert
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)

    ####################################################
    img = torch.from_numpy(img).to(device)
    #img = img.half() if half else img.float()  # uint8 to fp16/32
    im0 = cameraImg.copy()
    
    img = img.half()
    img = img.float()
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    # Inference
    t1 = time_synchronized()
    pred = model(img, augment=augment)[0]
    #pred = model(img, augment=opt.augment)[0]

    #print('thres:%d '%conf_thres)
    # Apply NMS
    pred = non_max_suppression(pred, conf_thres, iou_thres)
    #def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
    t2 = time_synchronized()
    
    # Apply Classifier
    
    # Process detections
    for i, det in enumerate(pred):  # detections per image
        # batch_size >= 1
        #if webcam:  
        #    p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
        #else:
        #    p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
        #    
        #p = Path(p)  # to Path
        #save_path = str(save_dir / p.name)  # img.jpg
        #txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
        #s += '%gx%g ' % img.shape[2:]  # print string

        # normalization gain whwh
        #gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  
        if len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
            
            # Print results
            for c in det[:, -1].unique():
                n = (det[:, -1] == c).sum()  # detections per class
                #s += f'{n} {names[int(c)]}s, '  # add to string
    
            # Write results
            for *xyxy, conf, cls in reversed(det):
                
                
                label = f'{names[int(cls)]} {conf:.2f}'
                #plot_one_box2(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                #plot_one_box2(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                #plot_one_box(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
            
        # Print time (inference + NMS)
        print(f'detection time. ({t2 - t1:.3f}s)')

        # Stream results
        #if view_img:
        cv2.imshow("win1", im0)
        cv2.imwrite("2021050412.jpg",im0)
        #img2 = im0.copy()
            


        ####################################################
        #pass



detectionObjectFunction()

 

 

 

 

###########################33

posted @ 2021-05-04 11:10  西北逍遥  阅读(1131)  评论(0编辑  收藏  举报