6号笔记本 tensorflow cpu object detection api
6号笔记本环境配置
done # # To activate this environment, use # # $ conda activate wind_202103 # # To deactivate an active environment, use # # $ conda deactivate (base) F:\> (base) F:\> (base) F:\> (base) F:\> (base) F:\> (base) F:\> (base) F:\>
测试
(wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research>python object_detection/builders/model_builder_tf2_test.py 2021-04-12 14:15:52.486730: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll Running tests under Python 3.7.10: E:\Anaconda3\install\envs\wind_202103\python.exe [ RUN ] ModelBuilderTF2Test.test_create_center_net_model 2021-04-12 14:15:55.906964: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set 2021-04-12 14:15:55.914149: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library nvcuda.dll 2021-04-12 14:15:58.094186: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties: pciBusID: 0000:01:00.0 name: GeForce RTX 3080 Laptop GPU computeCapability: 8.6 coreClock: 1.245GHz coreCount: 48 deviceMemorySize: 16.00GiB deviceMemoryBandwidth: 357.69GiB/s 2021-04-12 14:15:58.094455: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll 2021-04-12 14:15:58.144854: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll 2021-04-12 14:15:58.144929: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll 2021-04-12 14:15:58.170496: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll 2021-04-12 14:15:58.178093: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll 2021-04-12 14:15:58.182160: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'cusolver64_10.dll'; dlerror: cusolver64_10.dll not found 2021-04-12 14:15:58.199838: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll 2021-04-12 14:15:58.203486: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll 2021-04-12 14:15:58.203589: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... 2021-04-12 14:15:58.204149: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-04-12 14:15:58.204888: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix: 2021-04-12 14:15:58.207014: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 2021-04-12 14:15:58.211032: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_center_net_model): 2.91s I0412 14:15:58.526351 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_center_net_model): 2.91s [ OK ] ModelBuilderTF2Test.test_create_center_net_model [ RUN ] ModelBuilderTF2Test.test_create_center_net_model_from_keypoints INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_center_net_model_from_keypoints): 0.25s I0412 14:15:58.776292 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_center_net_model_from_keypoints): 0.25s [ OK ] ModelBuilderTF2Test.test_create_center_net_model_from_keypoints [ RUN ] ModelBuilderTF2Test.test_create_experimental_model INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_experimental_model): 0.0s I0412 14:15:58.776292 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_experimental_model): 0.0s [ OK ] ModelBuilderTF2Test.test_create_experimental_model [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature0 (True) INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature0 (True)): 0.03s I0412 14:15:58.807536 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature0 (True)): 0.03s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature0 (True) [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature1 (False) INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature1 (False)): 0.02s I0412 14:15:58.823157 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature1 (False)): 0.02s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature1 (False) [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_model_from_config_with_example_miner INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_model_from_config_with_example_miner): 0.02s I0412 14:15:58.838778 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_model_from_config_with_example_miner): 0.02s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_model_from_config_with_example_miner [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul): 0.09s I0412 14:15:58.932541 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul): 0.09s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul): 0.08s I0412 14:15:59.027438 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul): 0.08s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul): 0.1s I0412 14:15:59.138765 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul): 0.1s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul): 0.09s I0412 14:15:59.232494 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul): 0.09s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul [ RUN ] ModelBuilderTF2Test.test_create_rfcn_model_from_config INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_rfcn_model_from_config): 0.09s I0412 14:15:59.341844 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_rfcn_model_from_config): 0.09s [ OK ] ModelBuilderTF2Test.test_create_rfcn_model_from_config [ RUN ] ModelBuilderTF2Test.test_create_ssd_fpn_model_from_config INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_ssd_fpn_model_from_config): 0.03s I0412 14:15:59.374269 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_ssd_fpn_model_from_config): 0.03s [ OK ] ModelBuilderTF2Test.test_create_ssd_fpn_model_from_config [ RUN ] ModelBuilderTF2Test.test_create_ssd_models_from_config I0412 14:15:59.589379 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b0 I0412 14:15:59.589379 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 64 I0412 14:15:59.589379 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 3 I0412 14:15:59.589379 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:15:59.605001 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:15:59.605001 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:15:59.636244 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:15:59.636244 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:15:59.746711 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:15:59.746711 11224 efficientnet_model.py:147] round_filter input=40 output=40 I0412 14:15:59.847079 11224 efficientnet_model.py:147] round_filter input=40 output=40 I0412 14:15:59.847079 11224 efficientnet_model.py:147] round_filter input=80 output=80 I0412 14:16:00.003327 11224 efficientnet_model.py:147] round_filter input=80 output=80 I0412 14:16:00.003327 11224 efficientnet_model.py:147] round_filter input=112 output=112 I0412 14:16:00.160682 11224 efficientnet_model.py:147] round_filter input=112 output=112 I0412 14:16:00.160682 11224 efficientnet_model.py:147] round_filter input=192 output=192 I0412 14:16:00.420666 11224 efficientnet_model.py:147] round_filter input=192 output=192 I0412 14:16:00.420666 11224 efficientnet_model.py:147] round_filter input=320 output=320 I0412 14:16:00.484324 11224 efficientnet_model.py:147] round_filter input=1280 output=1280 I0412 14:16:00.515606 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.0, depth_coefficient=1.0, resolution=224, dropout_rate=0.2, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:00.572247 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b1 I0412 14:16:00.572247 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 88 I0412 14:16:00.572247 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 4 I0412 14:16:00.572247 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:16:00.587869 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:16:00.587869 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:16:00.665976 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:16:00.665976 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:16:00.822189 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:16:00.822189 11224 efficientnet_model.py:147] round_filter input=40 output=40 I0412 14:16:00.981099 11224 efficientnet_model.py:147] round_filter input=40 output=40 I0412 14:16:00.981099 11224 efficientnet_model.py:147] round_filter input=80 output=80 I0412 14:16:01.184208 11224 efficientnet_model.py:147] round_filter input=80 output=80 I0412 14:16:01.184208 11224 efficientnet_model.py:147] round_filter input=112 output=112 I0412 14:16:01.391219 11224 efficientnet_model.py:147] round_filter input=112 output=112 I0412 14:16:01.391219 11224 efficientnet_model.py:147] round_filter input=192 output=192 I0412 14:16:01.672546 11224 efficientnet_model.py:147] round_filter input=192 output=192 I0412 14:16:01.672546 11224 efficientnet_model.py:147] round_filter input=320 output=320 I0412 14:16:01.801679 11224 efficientnet_model.py:147] round_filter input=1280 output=1280 I0412 14:16:01.832922 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.0, depth_coefficient=1.1, resolution=240, dropout_rate=0.2, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:01.879786 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b2 I0412 14:16:01.879786 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 112 I0412 14:16:01.879786 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 5 I0412 14:16:01.895407 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:16:01.895407 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:16:01.911029 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:16:01.989136 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:16:01.989136 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:16:02.130882 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:16:02.130882 11224 efficientnet_model.py:147] round_filter input=40 output=48 I0412 14:16:02.293226 11224 efficientnet_model.py:147] round_filter input=40 output=48 I0412 14:16:02.293226 11224 efficientnet_model.py:147] round_filter input=80 output=88 I0412 14:16:02.497462 11224 efficientnet_model.py:147] round_filter input=80 output=88 I0412 14:16:02.497462 11224 efficientnet_model.py:147] round_filter input=112 output=120 I0412 14:16:02.780225 11224 efficientnet_model.py:147] round_filter input=112 output=120 I0412 14:16:02.780225 11224 efficientnet_model.py:147] round_filter input=192 output=208 I0412 14:16:03.053839 11224 efficientnet_model.py:147] round_filter input=192 output=208 I0412 14:16:03.053839 11224 efficientnet_model.py:147] round_filter input=320 output=352 I0412 14:16:03.178811 11224 efficientnet_model.py:147] round_filter input=1280 output=1408 I0412 14:16:03.210053 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.1, depth_coefficient=1.2, resolution=260, dropout_rate=0.3, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:03.272538 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b3 I0412 14:16:03.272538 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 160 I0412 14:16:03.272538 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 6 I0412 14:16:03.288159 11224 efficientnet_model.py:147] round_filter input=32 output=40 I0412 14:16:03.288159 11224 efficientnet_model.py:147] round_filter input=32 output=40 I0412 14:16:03.288159 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:03.367403 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:03.367403 11224 efficientnet_model.py:147] round_filter input=24 output=32 I0412 14:16:03.525760 11224 efficientnet_model.py:147] round_filter input=24 output=32 I0412 14:16:03.525760 11224 efficientnet_model.py:147] round_filter input=40 output=48 I0412 14:16:03.681978 11224 efficientnet_model.py:147] round_filter input=40 output=48 I0412 14:16:03.681978 11224 efficientnet_model.py:147] round_filter input=80 output=96 I0412 14:16:03.936995 11224 efficientnet_model.py:147] round_filter input=80 output=96 I0412 14:16:03.936995 11224 efficientnet_model.py:147] round_filter input=112 output=136 I0412 14:16:04.211657 11224 efficientnet_model.py:147] round_filter input=112 output=136 I0412 14:16:04.211657 11224 efficientnet_model.py:147] round_filter input=192 output=232 I0412 14:16:04.560706 11224 efficientnet_model.py:147] round_filter input=192 output=232 I0412 14:16:04.560706 11224 efficientnet_model.py:147] round_filter input=320 output=384 I0412 14:16:04.701331 11224 efficientnet_model.py:147] round_filter input=1280 output=1536 I0412 14:16:04.732574 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.2, depth_coefficient=1.4, resolution=300, dropout_rate=0.3, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:04.795061 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b4 I0412 14:16:04.795061 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 224 I0412 14:16:04.795061 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 7 I0412 14:16:04.795061 11224 efficientnet_model.py:147] round_filter input=32 output=48 I0412 14:16:04.810693 11224 efficientnet_model.py:147] round_filter input=32 output=48 I0412 14:16:04.810693 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:04.889998 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:04.889998 11224 efficientnet_model.py:147] round_filter input=24 output=32 I0412 14:16:05.079239 11224 efficientnet_model.py:147] round_filter input=24 output=32 I0412 14:16:05.079239 11224 efficientnet_model.py:147] round_filter input=40 output=56 I0412 14:16:05.410891 11224 efficientnet_model.py:147] round_filter input=40 output=56 I0412 14:16:05.410891 11224 efficientnet_model.py:147] round_filter input=80 output=112 I0412 14:16:05.725448 11224 efficientnet_model.py:147] round_filter input=80 output=112 I0412 14:16:05.725448 11224 efficientnet_model.py:147] round_filter input=112 output=160 I0412 14:16:06.054715 11224 efficientnet_model.py:147] round_filter input=112 output=160 I0412 14:16:06.054715 11224 efficientnet_model.py:147] round_filter input=192 output=272 I0412 14:16:06.576864 11224 efficientnet_model.py:147] round_filter input=192 output=272 I0412 14:16:06.576864 11224 efficientnet_model.py:147] round_filter input=320 output=448 I0412 14:16:06.717458 11224 efficientnet_model.py:147] round_filter input=1280 output=1792 I0412 14:16:06.749806 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.4, depth_coefficient=1.8, resolution=380, dropout_rate=0.4, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:06.824114 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b5 I0412 14:16:06.824114 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 288 I0412 14:16:06.824114 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 7 I0412 14:16:06.824114 11224 efficientnet_model.py:147] round_filter input=32 output=48 I0412 14:16:06.839785 11224 efficientnet_model.py:147] round_filter input=32 output=48 I0412 14:16:06.839785 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:06.964734 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:06.964734 11224 efficientnet_model.py:147] round_filter input=24 output=40 I0412 14:16:07.215926 11224 efficientnet_model.py:147] round_filter input=24 output=40 I0412 14:16:07.215926 11224 efficientnet_model.py:147] round_filter input=40 output=64 I0412 14:16:07.462391 11224 efficientnet_model.py:147] round_filter input=40 output=64 I0412 14:16:07.462391 11224 efficientnet_model.py:147] round_filter input=80 output=128 I0412 14:16:07.847848 11224 efficientnet_model.py:147] round_filter input=80 output=128 I0412 14:16:07.847848 11224 efficientnet_model.py:147] round_filter input=112 output=176 I0412 14:16:08.227632 11224 efficientnet_model.py:147] round_filter input=112 output=176 I0412 14:16:08.227632 11224 efficientnet_model.py:147] round_filter input=192 output=304 I0412 14:16:08.935734 11224 efficientnet_model.py:147] round_filter input=192 output=304 I0412 14:16:08.935734 11224 efficientnet_model.py:147] round_filter input=320 output=512 I0412 14:16:09.201296 11224 efficientnet_model.py:147] round_filter input=1280 output=2048 I0412 14:16:09.248161 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.6, depth_coefficient=2.2, resolution=456, dropout_rate=0.4, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:09.327469 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b6 I0412 14:16:09.327469 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 384 I0412 14:16:09.327469 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 8 I0412 14:16:09.330456 11224 efficientnet_model.py:147] round_filter input=32 output=56 I0412 14:16:09.330456 11224 efficientnet_model.py:147] round_filter input=32 output=56 I0412 14:16:09.330456 11224 efficientnet_model.py:147] round_filter input=16 output=32 I0412 14:16:09.455431 11224 efficientnet_model.py:147] round_filter input=16 output=32 I0412 14:16:09.455431 11224 efficientnet_model.py:147] round_filter input=24 output=40 I0412 14:16:09.769093 11224 efficientnet_model.py:147] round_filter input=24 output=40 I0412 14:16:09.769093 11224 efficientnet_model.py:147] round_filter input=40 output=72 I0412 14:16:10.072026 11224 efficientnet_model.py:147] round_filter input=40 output=72 I0412 14:16:10.072026 11224 efficientnet_model.py:147] round_filter input=80 output=144 I0412 14:16:10.504786 11224 efficientnet_model.py:147] round_filter input=80 output=144 I0412 14:16:10.504786 11224 efficientnet_model.py:147] round_filter input=112 output=200 I0412 14:16:10.973426 11224 efficientnet_model.py:147] round_filter input=112 output=200 I0412 14:16:10.973426 11224 efficientnet_model.py:147] round_filter input=192 output=344 I0412 14:16:11.731940 11224 efficientnet_model.py:147] round_filter input=192 output=344 I0412 14:16:11.731940 11224 efficientnet_model.py:147] round_filter input=320 output=576 I0412 14:16:12.084060 11224 efficientnet_model.py:147] round_filter input=1280 output=2304 I0412 14:16:12.130926 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.8, depth_coefficient=2.6, resolution=528, dropout_rate=0.5, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:12.209056 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b7 I0412 14:16:12.209056 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 384 I0412 14:16:12.224833 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 8 I0412 14:16:12.224833 11224 efficientnet_model.py:147] round_filter input=32 output=64 I0412 14:16:12.224833 11224 efficientnet_model.py:147] round_filter input=32 output=64 I0412 14:16:12.224833 11224 efficientnet_model.py:147] round_filter input=16 output=32 I0412 14:16:12.388885 11224 efficientnet_model.py:147] round_filter input=16 output=32 I0412 14:16:12.388885 11224 efficientnet_model.py:147] round_filter input=24 output=48 I0412 14:16:12.748528 11224 efficientnet_model.py:147] round_filter input=24 output=48 I0412 14:16:12.748528 11224 efficientnet_model.py:147] round_filter input=40 output=80 I0412 14:16:13.119887 11224 efficientnet_model.py:147] round_filter input=40 output=80 I0412 14:16:13.119887 11224 efficientnet_model.py:147] round_filter input=80 output=160 I0412 14:16:13.672224 11224 efficientnet_model.py:147] round_filter input=80 output=160 I0412 14:16:13.672224 11224 efficientnet_model.py:147] round_filter input=112 output=224 I0412 14:16:14.254858 11224 efficientnet_model.py:147] round_filter input=112 output=224 I0412 14:16:14.254858 11224 efficientnet_model.py:147] round_filter input=192 output=384 I0412 14:16:15.250613 11224 efficientnet_model.py:147] round_filter input=192 output=384 I0412 14:16:15.250613 11224 efficientnet_model.py:147] round_filter input=320 output=640 I0412 14:16:15.611495 11224 efficientnet_model.py:147] round_filter input=1280 output=2560 I0412 14:16:15.658359 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=2.0, depth_coefficient=3.1, resolution=600, dropout_rate=0.5, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_ssd_models_from_config): 16.39s I0412 14:16:15.767739 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_ssd_models_from_config): 16.39s [ OK ] ModelBuilderTF2Test.test_create_ssd_models_from_config [ RUN ] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update): 0.0s I0412 14:16:15.767739 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update): 0.0s [ OK ] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update [ RUN ] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold): 0.0s I0412 14:16:15.783332 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold): 0.0s [ OK ] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold [ RUN ] ModelBuilderTF2Test.test_invalid_model_config_proto INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_model_config_proto): 0.0s I0412 14:16:15.792893 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_invalid_model_config_proto): 0.0s [ OK ] ModelBuilderTF2Test.test_invalid_model_config_proto [ RUN ] ModelBuilderTF2Test.test_invalid_second_stage_batch_size INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_second_stage_batch_size): 0.0s I0412 14:16:15.796538 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_invalid_second_stage_batch_size): 0.0s [ OK ] ModelBuilderTF2Test.test_invalid_second_stage_batch_size [ RUN ] ModelBuilderTF2Test.test_session [ SKIPPED ] ModelBuilderTF2Test.test_session [ RUN ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor): 0.0s I0412 14:16:15.801620 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor): 0.0s [ OK ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor [ RUN ] ModelBuilderTF2Test.test_unknown_meta_architecture INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_meta_architecture): 0.0s I0412 14:16:15.803169 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_unknown_meta_architecture): 0.0s [ OK ] ModelBuilderTF2Test.test_unknown_meta_architecture [ RUN ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_ssd_feature_extractor): 0.0s I0412 14:16:15.805706 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_unknown_ssd_feature_extractor): 0.0s [ OK ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor ---------------------------------------------------------------------- Ran 21 tests in 20.176s OK (skipped=1) (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research>
安装 tensorflow-cpu
(base) F:\> (base) F:\> (base) F:\> (base) F:\> (base) F:\> (base) F:\>conda activate wind_202103 (wind_202103) F:\> (wind_202103) F:\> (wind_202103) F:\> (wind_202103) F:\> (wind_202103) F:\>pip install tensorflow-cpu==2.2.2 Collecting tensorflow-cpu==2.2.2 Downloading tensorflow_cpu-2.2.2-cp37-cp37m-win_amd64.whl (189.3 MB) |████████████████████████████████| 189.3 MB 1.1 MB/s Collecting termcolor>=1.1.0 Using cached termcolor-1.1.0-py3-none-any.whl Collecting gast==0.3.3 Using cached gast-0.3.3-py2.py3-none-any.whl (9.7 kB) Collecting h5py<2.11.0,>=2.10.0 Using cached h5py-2.10.0-cp37-cp37m-win_amd64.whl (2.5 MB) Collecting opt-einsum>=2.3.2 Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB) Collecting absl-py>=0.7.0 Using cached absl_py-0.12.0-py3-none-any.whl (129 kB) Collecting tensorflow-estimator<2.3.0,>=2.2.0 Downloading tensorflow_estimator-2.2.0-py2.py3-none-any.whl (454 kB) |████████████████████████████████| 454 kB 1.3 MB/s Requirement already satisfied: wheel>=0.26 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow-cpu==2.2.2) (0.36.2) Collecting protobuf>=3.8.0 Downloading protobuf-3.15.8-cp37-cp37m-win_amd64.whl (904 kB) |████████████████████████████████| 904 kB 1.3 MB/s Collecting six>=1.12.0 Using cached six-1.15.0-py2.py3-none-any.whl (10 kB) Collecting google-pasta>=0.1.8 Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB) Collecting numpy<1.19.0,>=1.16.0 Downloading numpy-1.18.5-cp37-cp37m-win_amd64.whl (12.7 MB) |████████████████████████████████| 12.7 MB 1.3 MB/s Collecting wrapt>=1.11.1 Using cached wrapt-1.12.1-cp37-cp37m-win_amd64.whl Collecting astunparse==1.6.3 Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB) Collecting keras-preprocessing>=1.1.0 Using cached Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB) Collecting grpcio>=1.8.6 Downloading grpcio-1.37.0-cp37-cp37m-win_amd64.whl (3.1 MB) |████████████████████████████████| 3.1 MB 3.3 MB/s Collecting tensorboard<2.3.0,>=2.2.0 Downloading tensorboard-2.2.2-py3-none-any.whl (3.0 MB) |████████████████████████████████| 3.0 MB 2.2 MB/s Collecting werkzeug>=0.11.15 Using cached Werkzeug-1.0.1-py2.py3-none-any.whl (298 kB) Collecting requests<3,>=2.21.0 Using cached requests-2.25.1-py2.py3-none-any.whl (61 kB) Collecting google-auth<2,>=1.6.3 Downloading google_auth-1.28.1-py2.py3-none-any.whl (136 kB) |████████████████████████████████| 136 kB 6.8 MB/s Collecting tensorboard-plugin-wit>=1.6.0 Using cached tensorboard_plugin_wit-1.8.0-py3-none-any.whl (781 kB) Collecting markdown>=2.6.8 Using cached Markdown-3.3.4-py3-none-any.whl (97 kB) Requirement already satisfied: setuptools>=41.0.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow-cpu==2.2.2) (52.0.0.post20210125) Collecting google-auth-oauthlib<0.5,>=0.4.1 Using cached google_auth_oauthlib-0.4.4-py2.py3-none-any.whl (18 kB) Collecting cachetools<5.0,>=2.0.0 Using cached cachetools-4.2.1-py3-none-any.whl (12 kB) Collecting pyasn1-modules>=0.2.1 Using cached pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB) Collecting rsa<5,>=3.1.4 Using cached rsa-4.7.2-py3-none-any.whl (34 kB) Collecting requests-oauthlib>=0.7.0 Using cached requests_oauthlib-1.3.0-py2.py3-none-any.whl (23 kB) Collecting importlib-metadata Using cached importlib_metadata-3.10.0-py3-none-any.whl (14 kB) Collecting pyasn1<0.5.0,>=0.4.6 Using cached pyasn1-0.4.8-py2.py3-none-any.whl (77 kB) Collecting chardet<5,>=3.0.2 Using cached chardet-4.0.0-py2.py3-none-any.whl (178 kB) Collecting idna<3,>=2.5 Using cached idna-2.10-py2.py3-none-any.whl (58 kB) Requirement already satisfied: certifi>=2017.4.17 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from requests<3,>=2.21.0->tensorboard<2.3.0,>=2.2.0->tensorflow-cpu==2.2.2) (2020.12.5) Collecting urllib3<1.27,>=1.21.1 Using cached urllib3-1.26.4-py2.py3-none-any.whl (153 kB) Collecting oauthlib>=3.0.0 Using cached oauthlib-3.1.0-py2.py3-none-any.whl (147 kB) Collecting typing-extensions>=3.6.4 Using cached typing_extensions-3.7.4.3-py3-none-any.whl (22 kB) Collecting zipp>=0.5 Using cached zipp-3.4.1-py3-none-any.whl (5.2 kB) Installing collected packages: urllib3, pyasn1, idna, chardet, zipp, typing-extensions, six, rsa, requests, pyasn1-modules, oauthlib, cachetools, requests-oauthlib, importlib-metadata, google-auth, werkzeug, tensorboard-plugin-wit, protobuf, numpy, markdown, grpcio, google-auth-oauthlib, absl-py, wrapt, termcolor, tensorflow-estimator, tensorboard, opt-einsum, keras-preprocessing, h5py, google-pasta, gast, astunparse, tensorflow-cpu Successfully installed absl-py-0.12.0 astunparse-1.6.3 cachetools-4.2.1 chardet-4.0.0 gast-0.3.3 google-auth-1.28.1 google-auth-oauthlib-0.4.4 google-pasta-0.2.0 grpcio-1.37.0 h5py-2.10.0 idna-2.10 importlib-metadata-3.10.0 keras-preprocessing-1.1.2 markdown-3.3.4 numpy-1.18.5 oauthlib-3.1.0 opt-einsum-3.3.0 protobuf-3.15.8 pyasn1-0.4.8 pyasn1-modules-0.2.8 requests-2.25.1 requests-oauthlib-1.3.0 rsa-4.7.2 six-1.15.0 tensorboard-2.2.2 tensorboard-plugin-wit-1.8.0 tensorflow-cpu-2.2.2 tensorflow-estimator-2.2.0 termcolor-1.1.0 typing-extensions-3.7.4.3 urllib3-1.26.4 werkzeug-1.0.1 wrapt-1.12.1 zipp-3.4.1 (wind_202103) F:\> (wind_202103) F:\> (wind_202103) F:\> (wind_202103) F:\> (wind_202103) F:\> (wind_202103) F:\> (wind_202103) F:\>
安装 object detection api
(wind_202103) F:\>cd F:\TensorflowProject\models-master\research (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research>protoc object_detection/protos/*.proto --python_out=. (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research>python -m pip install --use-feature=2020-resolver . WARNING: --use-feature=2020-resolver no longer has any effect, since it is now the default dependency resolver in pip. This will become an error in pip 21.0. Processing f:\tensorflowproject\models-master\research Collecting avro-python3 Downloading avro-python3-1.10.2.tar.gz (38 kB) Collecting apache-beam Downloading apache_beam-2.28.0-cp37-cp37m-win_amd64.whl (3.6 MB) |████████████████████████████████| 3.6 MB 6.4 MB/s Collecting pillow Using cached Pillow-8.2.0-cp37-cp37m-win_amd64.whl (2.2 MB) Collecting lxml Downloading lxml-4.6.3-cp37-cp37m-win_amd64.whl (3.5 MB) |████████████████████████████████| 3.5 MB 251 kB/s Collecting matplotlib Using cached matplotlib-3.4.1-cp37-cp37m-win_amd64.whl (7.1 MB) Collecting Cython Using cached Cython-0.29.22-cp37-cp37m-win_amd64.whl (1.6 MB) Collecting contextlib2 Downloading contextlib2-0.6.0.post1-py2.py3-none-any.whl (9.8 kB) Collecting tf-slim Downloading tf_slim-1.1.0-py2.py3-none-any.whl (352 kB) |████████████████████████████████| 352 kB 6.4 MB/s Requirement already satisfied: six in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from object-detection==0.1) (1.15.0) Collecting pycocotools Using cached pycocotools-2.0.2-cp37-cp37m-win_amd64.whl Collecting lvis Downloading lvis-0.5.3-py3-none-any.whl (14 kB) Collecting scipy Using cached scipy-1.6.2-cp37-cp37m-win_amd64.whl (32.6 MB) Collecting pandas Downloading pandas-1.2.3-cp37-cp37m-win_amd64.whl (9.1 MB) |████████████████████████████████| 9.1 MB 6.4 MB/s Collecting tf-models-official Downloading tf_models_official-2.4.0-py2.py3-none-any.whl (1.1 MB) |████████████████████████████████| 1.1 MB ... Collecting avro-python3 Downloading avro-python3-1.9.2.1.tar.gz (37 kB) Collecting dill<0.3.2,>=0.3.1.1 Downloading dill-0.3.1.1.tar.gz (151 kB) |████████████████████████████████| 151 kB ... Collecting crcmod<2.0,>=1.7 Downloading crcmod-1.7.tar.gz (89 kB) |████████████████████████████████| 89 kB 6.1 MB/s Requirement already satisfied: requests<3.0.0,>=2.24.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from apache-beam->object-detection==0.1) (2.25.1) Collecting oauth2client<5,>=2.0.1 Downloading oauth2client-4.1.3-py2.py3-none-any.whl (98 kB) |████████████████████████████████| 98 kB 3.8 MB/s Requirement already satisfied: protobuf<4,>=3.12.2 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from apache-beam->object-detection==0.1) (3.15.8) Requirement already satisfied: numpy<1.20.0,>=1.14.3 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from apache-beam->object-detection==0.1) (1.18.5) Collecting pytz>=2018.3 Using cached pytz-2021.1-py2.py3-none-any.whl (510 kB) Collecting fastavro<2,>=0.21.4 Downloading fastavro-1.3.5-cp37-cp37m-win_amd64.whl (392 kB) |████████████████████████████████| 392 kB 6.4 MB/s Collecting pymongo<4.0.0,>=3.8.0 Downloading pymongo-3.11.3-cp37-cp37m-win_amd64.whl (382 kB) |████████████████████████████████| 382 kB 107 kB/s Collecting python-dateutil<3,>=2.8.0 Using cached python_dateutil-2.8.1-py2.py3-none-any.whl (227 kB) Collecting future<1.0.0,>=0.18.2 Using cached future-0.18.2.tar.gz (829 kB) Collecting mock<3.0.0,>=1.0.1 Downloading mock-2.0.0-py2.py3-none-any.whl (56 kB) |████████████████████████████████| 56 kB ... Requirement already satisfied: grpcio<2,>=1.29.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from apache-beam->object-detection==0.1) (1.37.0) Requirement already satisfied: typing-extensions<3.8.0,>=3.7.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from apache-beam->object-detection==0.1) (3.7.4.3) Collecting hdfs<3.0.0,>=2.1.0 Downloading hdfs-2.6.0-py3-none-any.whl (33 kB) Collecting httplib2<0.18.0,>=0.8 Downloading httplib2-0.17.4-py3-none-any.whl (95 kB) |████████████████████████████████| 95 kB 2.0 MB/s Collecting pyarrow<3.0.0,>=0.15.1 Downloading pyarrow-2.0.0-cp37-cp37m-win_amd64.whl (10.7 MB) |████████████████████████████████| 10.7 MB 3.3 MB/s Collecting pydot<2,>=1.2.0 Downloading pydot-1.4.2-py2.py3-none-any.whl (21 kB) Collecting docopt Using cached docopt-0.6.2.tar.gz (25 kB) Collecting pbr>=0.11 Downloading pbr-5.5.1-py2.py3-none-any.whl (106 kB) |████████████████████████████████| 106 kB 6.8 MB/s Requirement already satisfied: pyasn1>=0.1.7 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from oauth2client<5,>=2.0.1->apache-beam->object-detection==0.1) (0.4.8) Requirement already satisfied: pyasn1-modules>=0.0.5 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from oauth2client<5,>=2.0.1->apache-beam->object-detection==0.1) (0.2.8) Requirement already satisfied: rsa>=3.1.4 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from oauth2client<5,>=2.0.1->apache-beam->object-detection==0.1) (4.7.2) Collecting pyparsing>=2.1.4 Using cached pyparsing-2.4.7-py2.py3-none-any.whl (67 kB) Requirement already satisfied: chardet<5,>=3.0.2 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from requests<3.0.0,>=2.24.0->apache-beam->object-detection==0.1) (4.0.0) Requirement already satisfied: certifi>=2017.4.17 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from requests<3.0.0,>=2.24.0->apache-beam->object-detection==0.1) (2020.12.5) Requirement already satisfied: idna<3,>=2.5 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from requests<3.0.0,>=2.24.0->apache-beam->object-detection==0.1) (2.10) Requirement already satisfied: urllib3<1.27,>=1.21.1 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from requests<3.0.0,>=2.24.0->apache-beam->object-detection==0.1) (1.26.4) Collecting cycler>=0.10.0 Using cached cycler-0.10.0-py2.py3-none-any.whl (6.5 kB) Collecting opencv-python>=4.1.0.25 Using cached opencv_python-4.5.1.48-cp37-cp37m-win_amd64.whl (34.9 MB) Collecting kiwisolver>=1.1.0 Using cached kiwisolver-1.3.1-cp37-cp37m-win_amd64.whl (51 kB) Requirement already satisfied: setuptools>=18.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from pycocotools->object-detection==0.1) (52.0.0.post20210125) Collecting psutil>=5.4.3 Downloading psutil-5.8.0-cp37-cp37m-win_amd64.whl (244 kB) |████████████████████████████████| 244 kB 6.8 MB/s Collecting tensorflow-model-optimization>=0.4.1 Downloading tensorflow_model_optimization-0.5.0-py2.py3-none-any.whl (172 kB) |████████████████████████████████| 172 kB 6.8 MB/s Collecting sentencepiece Downloading sentencepiece-0.1.95-cp37-cp37m-win_amd64.whl (1.2 MB) |████████████████████████████████| 1.2 MB 6.8 MB/s Collecting seqeval Downloading seqeval-1.2.2.tar.gz (43 kB) |████████████████████████████████| 43 kB ... Collecting tensorflow>=2.4.0 Downloading tensorflow-2.4.1-cp37-cp37m-win_amd64.whl (370.7 MB) |████████████████████████████████| 370.7 MB 144 kB/s Collecting google-api-python-client>=1.6.7 Downloading google_api_python_client-2.1.0-py2.py3-none-any.whl (6.6 MB) |████████████████████████████████| 6.6 MB 6.4 MB/s Collecting dataclasses Downloading dataclasses-0.6-py3-none-any.whl (14 kB) Collecting tensorflow-addons Downloading tensorflow_addons-0.12.1-cp37-cp37m-win_amd64.whl (639 kB) |████████████████████████████████| 639 kB 6.4 MB/s Collecting tensorflow-datasets Downloading tensorflow_datasets-4.2.0-py3-none-any.whl (3.7 MB) |████████████████████████████████| 3.7 MB 6.4 MB/s Collecting gin-config Downloading gin_config-0.4.0-py2.py3-none-any.whl (46 kB) |████████████████████████████████| 46 kB 1.6 MB/s Collecting tensorflow-hub>=0.6.0 Downloading tensorflow_hub-0.11.0-py2.py3-none-any.whl (107 kB) |████████████████████████████████| 107 kB 6.4 MB/s Collecting opencv-python-headless Downloading opencv_python_headless-4.5.1.48-cp37-cp37m-win_amd64.whl (34.8 MB) |████████████████████████████████| 34.8 MB 6.4 MB/s Collecting google-cloud-bigquery>=0.31.0 Downloading google_cloud_bigquery-2.13.1-py2.py3-none-any.whl (216 kB) |████████████████████████████████| 216 kB ... Collecting py-cpuinfo>=3.3.0 Downloading py-cpuinfo-7.0.0.tar.gz (95 kB) |████████████████████████████████| 95 kB 2.5 MB/s Collecting kaggle>=1.3.9 Downloading kaggle-1.5.12.tar.gz (58 kB) |████████████████████████████████| 58 kB 4.1 MB/s Collecting pyyaml>=5.1 Using cached PyYAML-5.4.1-cp37-cp37m-win_amd64.whl (210 kB) Collecting google-auth-httplib2>=0.1.0 Downloading google_auth_httplib2-0.1.0-py2.py3-none-any.whl (9.3 kB) Collecting google-api-core<2dev,>=1.21.0 Downloading google_api_core-1.26.3-py2.py3-none-any.whl (93 kB) |████████████████████████████████| 93 kB 528 kB/s Collecting uritemplate<4dev,>=3.0.0 Downloading uritemplate-3.0.1-py2.py3-none-any.whl (15 kB) Requirement already satisfied: google-auth<2dev,>=1.16.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from google-api-python-client>=1.6.7->tf-models-official->object-detection==0.1) (1.28.1) Collecting packaging>=14.3 Downloading packaging-20.9-py2.py3-none-any.whl (40 kB) |████████████████████████████████| 40 kB 2.7 MB/s Collecting googleapis-common-protos<2.0dev,>=1.6.0 Downloading googleapis_common_protos-1.53.0-py2.py3-none-any.whl (198 kB) |████████████████████████████████| 198 kB 6.8 MB/s Requirement already satisfied: cachetools<5.0,>=2.0.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from google-auth<2dev,>=1.16.0->google-api-python-client>=1.6.7->tf-models-official->object-detection==0.1) (4.2.1) Collecting proto-plus>=1.10.0 Downloading proto_plus-1.18.1-py3-none-any.whl (42 kB) |████████████████████████████████| 42 kB ... Collecting google-cloud-core<2.0dev,>=1.4.1 Downloading google_cloud_core-1.6.0-py2.py3-none-any.whl (28 kB) Collecting google-resumable-media<2.0dev,>=0.6.0 Downloading google_resumable_media-1.2.0-py2.py3-none-any.whl (75 kB) |████████████████████████████████| 75 kB 1.5 MB/s Collecting google-crc32c<2.0dev,>=1.0 Downloading google_crc32c-1.1.2-cp37-cp37m-win_amd64.whl (34 kB) Collecting cffi>=1.0.0 Downloading cffi-1.14.5-cp37-cp37m-win_amd64.whl (178 kB) |████████████████████████████████| 178 kB 6.4 MB/s Collecting pycparser Downloading pycparser-2.20-py2.py3-none-any.whl (112 kB) |████████████████████████████████| 112 kB 6.8 MB/s Collecting tqdm Downloading tqdm-4.60.0-py2.py3-none-any.whl (75 kB) |████████████████████████████████| 75 kB 2.0 MB/s Collecting python-slugify Downloading python-slugify-4.0.1.tar.gz (11 kB) Collecting tensorflow-estimator<2.5.0,>=2.4.0 Using cached tensorflow_estimator-2.4.0-py2.py3-none-any.whl (462 kB) Collecting numpy<1.20.0,>=1.14.3 Using cached numpy-1.19.5-cp37-cp37m-win_amd64.whl (13.2 MB) Requirement already satisfied: opt-einsum~=3.3.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (3.3.0) Collecting flatbuffers~=1.12.0 Using cached flatbuffers-1.12-py2.py3-none-any.whl (15 kB) Requirement already satisfied: google-pasta~=0.2 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (0.2.0) Requirement already satisfied: wheel~=0.35 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (0.36.2) Collecting tensorboard~=2.4 Using cached tensorboard-2.4.1-py3-none-any.whl (10.6 MB) Requirement already satisfied: termcolor~=1.1.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (1.1.0) Collecting grpcio<2,>=1.29.0 Using cached grpcio-1.32.0-cp37-cp37m-win_amd64.whl (2.5 MB) Requirement already satisfied: astunparse~=1.6.3 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (1.6.3) Requirement already satisfied: gast==0.3.3 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (0.3.3) Requirement already satisfied: keras-preprocessing~=1.1.2 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (1.1.2) Requirement already satisfied: h5py~=2.10.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (2.10.0) Requirement already satisfied: wrapt~=1.12.1 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (1.12.1) Requirement already satisfied: absl-py~=0.10 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (0.12.0) Requirement already satisfied: markdown>=2.6.8 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorboard~=2.4->tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (3.3.4) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorboard~=2.4->tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (0.4.4) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorboard~=2.4->tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (1.8.0) Requirement already satisfied: werkzeug>=0.11.15 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from tensorboard~=2.4->tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (1.0.1) Requirement already satisfied: requests-oauthlib>=0.7.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (1.3.0) Requirement already satisfied: importlib-metadata in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from markdown>=2.6.8->tensorboard~=2.4->tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (3.10.0) Requirement already satisfied: oauthlib>=3.0.0 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (3.1.0) Collecting dm-tree~=0.1.1 Downloading dm_tree-0.1.5-cp37-cp37m-win_amd64.whl (86 kB) |████████████████████████████████| 86 kB 2.3 MB/s Requirement already satisfied: zipp>=0.5 in e:\anaconda3\install\envs\wind_202103\lib\site-packages (from importlib-metadata->markdown>=2.6.8->tensorboard~=2.4->tensorflow>=2.4.0->tf-models-official->object-detection==0.1) (3.4.1) Collecting text-unidecode>=1.3 Downloading text_unidecode-1.3-py2.py3-none-any.whl (78 kB) |████████████████████████████████| 78 kB 5.5 MB/s Collecting scikit-learn>=0.21.3 Downloading scikit_learn-0.24.1-cp37-cp37m-win_amd64.whl (6.8 MB) |████████████████████████████████| 6.8 MB 364 kB/s Collecting threadpoolctl>=2.0.0 Using cached threadpoolctl-2.1.0-py3-none-any.whl (12 kB) Collecting joblib>=0.11 Using cached joblib-1.0.1-py3-none-any.whl (303 kB) Collecting typeguard>=2.7 Downloading typeguard-2.12.0-py3-none-any.whl (16 kB) Collecting promise Downloading promise-2.3.tar.gz (19 kB) Collecting tensorflow-metadata Downloading tensorflow_metadata-0.29.0-py3-none-any.whl (47 kB) |████████████████████████████████| 47 kB 3.4 MB/s Collecting importlib-resources Downloading importlib_resources-5.1.2-py3-none-any.whl (25 kB) Collecting attrs>=18.1.0 Downloading attrs-20.3.0-py2.py3-none-any.whl (49 kB) |████████████████████████████████| 49 kB 3.2 MB/s Building wheels for collected packages: object-detection, avro-python3, crcmod, dill, future, docopt, kaggle, py-cpuinfo, python-slugify, seqeval, promise Building wheel for object-detection (setup.py) ... done Created wheel for object-detection: filename=object_detection-0.1-py3-none-any.whl size=1644003 sha256=438ab0e3fe0a1444bda2014d6b11b91cf2a93d5bfb3f2ffc72def1cddfdcb50e Stored in directory: C:\Users\BIM\AppData\Local\Temp\pip-ephem-wheel-cache-607bho7i\wheels\25\df\7c\f10d33cbbded9d858ca0ec5852c4e6448ff366dbf648d5b9f1 Building wheel for avro-python3 (setup.py) ... done Created wheel for avro-python3: filename=avro_python3-1.9.2.1-py3-none-any.whl size=43512 sha256=6eb1f83c9134b65a46b01a138e1469ed320efca1443d47d9c041f734dafb0ac8 Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\bc\49\5f\fdb5b9d85055c478213e0158ac122b596816149a02d82e0ab1 Building wheel for crcmod (setup.py) ... done Created wheel for crcmod: filename=crcmod-1.7-cp37-cp37m-win_amd64.whl size=25420 sha256=48b89fa8ca6178c41b06803b0fdf4c610640ac2f793003a5b51cf5424c1becc9 Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\dc\9a\e9\49e627353476cec8484343c4ab656f1e0d783ee77b9dde2d1f Building wheel for dill (setup.py) ... done Created wheel for dill: filename=dill-0.3.1.1-py3-none-any.whl size=78594 sha256=01257f3976c005d253761dea76934a2044123e1d0ce6cf84e322df14410c2679 Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\a4\61\fd\c57e374e580aa78a45ed78d5859b3a44436af17e22ca53284f Building wheel for future (setup.py) ... done Created wheel for future: filename=future-0.18.2-py3-none-any.whl size=491059 sha256=4641c73010c95644a52b1fa468d6b80de84a62d2028364d4a02cfd3165bb4e62 Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\56\b0\fe\4410d17b32f1f0c3cf54cdfb2bc04d7b4b8f4ae377e2229ba0 Building wheel for docopt (setup.py) ... done Created wheel for docopt: filename=docopt-0.6.2-py2.py3-none-any.whl size=13705 sha256=5a922722c8b4c65acafaeec8e23bf986e6301f89592770ca86269850e5eafe24 Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\72\b0\3f\1d95f96ff986c7dfffe46ce2be4062f38ebd04b506c77c81b9 Building wheel for kaggle (setup.py) ... done Created wheel for kaggle: filename=kaggle-1.5.12-py3-none-any.whl size=73053 sha256=2a2a466c0c45560892582652a4f63d22bedf5cbef7b91647be6336a83284310e Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\62\d6\58\5853130f941e75b2177d281eb7e44b4a98ed46dd155f556dc5 Building wheel for py-cpuinfo (setup.py) ... done Created wheel for py-cpuinfo: filename=py_cpuinfo-7.0.0-py3-none-any.whl size=20070 sha256=e7092a7bc641e8e35d4793d50cca2616e37be2995fff5efd60697750b46c8cf8 Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\d7\59\0d\58c5e576d9192261fa3da00466eebe6f7a1ac1873a7ab1f2ce Building wheel for python-slugify (setup.py) ... done Created wheel for python-slugify: filename=python_slugify-4.0.1-py2.py3-none-any.whl size=6769 sha256=a4e531b0f66f13c3912cd45958658f9dca9eeb63b8b860b91454e603ad44fb8b Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\48\1b\6f\5c1cfab22eacbe0095fc619786da6571b55253653c71324b5c Building wheel for seqeval (setup.py) ... done Created wheel for seqeval: filename=seqeval-1.2.2-py3-none-any.whl size=16170 sha256=baedbd5afa3f6f4055c397f2fa6841567fb6c7f00e85a226ef39c6205b7bb38d Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\05\96\ee\7cac4e74f3b19e3158dce26a20a1c86b3533c43ec72a549fd7 Building wheel for promise (setup.py) ... done Created wheel for promise: filename=promise-2.3-py3-none-any.whl size=21494 sha256=703d5207d84c2fa8a8024975cf73faa11af98e895627f47fdf537b099cc61289 Stored in directory: c:\users\bim\appdata\local\pip\cache\wheels\29\93\c6\762e359f8cb6a5b69c72235d798804cae523bbe41c2aa8333d Successfully built object-detection avro-python3 crcmod dill future docopt kaggle py-cpuinfo python-slugify seqeval promise Installing collected packages: pyparsing, pycparser, pytz, packaging, numpy, googleapis-common-protos, cffi, threadpoolctl, text-unidecode, scipy, python-dateutil, pillow, kiwisolver, joblib, httplib2, grpcio, google-crc32c, google-api-core, cycler, uritemplate, typeguard, tqdm, tensorflow-metadata, tensorflow-estimator, tensorboard, scikit-learn, python-slugify, proto-plus, promise, pbr, matplotlib, importlib-resources, google-resumable-media, google-cloud-core, google-auth-httplib2, future, flatbuffers, docopt, dm-tree, dill, Cython, attrs, tf-slim, tensorflow-model-optimization, tensorflow-hub, tensorflow-datasets, tensorflow-addons, tensorflow, seqeval, sentencepiece, pyyaml, pymongo, pydot, pycocotools, pyarrow, py-cpuinfo, psutil, pandas, opencv-python-headless, opencv-python, oauth2client, mock, kaggle, hdfs, google-cloud-bigquery, google-api-python-client, gin-config, fastavro, dataclasses, crcmod, avro-python3, tf-models-official, lxml, lvis, contextlib2, apache-beam, object-detection Attempting uninstall: numpy Found existing installation: numpy 1.18.5 Uninstalling numpy-1.18.5: Successfully uninstalled numpy-1.18.5 Attempting uninstall: grpcio Found existing installation: grpcio 1.37.0 Uninstalling grpcio-1.37.0: Successfully uninstalled grpcio-1.37.0 Attempting uninstall: tensorflow-estimator Found existing installation: tensorflow-estimator 2.2.0 Uninstalling tensorflow-estimator-2.2.0: Successfully uninstalled tensorflow-estimator-2.2.0 Attempting uninstall: tensorboard Found existing installation: tensorboard 2.2.2 Uninstalling tensorboard-2.2.2: Successfully uninstalled tensorboard-2.2.2 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. tensorflow-cpu 2.2.2 requires numpy<1.19.0,>=1.16.0, but you have numpy 1.19.5 which is incompatible. tensorflow-cpu 2.2.2 requires tensorboard<2.3.0,>=2.2.0, but you have tensorboard 2.4.1 which is incompatible. tensorflow-cpu 2.2.2 requires tensorflow-estimator<2.3.0,>=2.2.0, but you have tensorflow-estimator 2.4.0 which is incompatible. Successfully installed Cython-0.29.22 apache-beam-2.28.0 attrs-20.3.0 avro-python3-1.9.2.1 cffi-1.14.5 contextlib2-0.6.0.post1 crcmod-1.7 cycler-0.10.0 dataclasses-0.6 dill-0.3.1.1 dm-tree-0.1.5 docopt-0.6.2 fastavro-1.3.5 flatbuffers-1.12 future-0.18.2 gin-config-0.4.0 google-api-core-1.26.3 google-api-python-client-2.1.0 google-auth-httplib2-0.1.0 google-cloud-bigquery-2.13.1 google-cloud-core-1.6.0 google-crc32c-1.1.2 google-resumable-media-1.2.0 googleapis-common-protos-1.53.0 grpcio-1.32.0 hdfs-2.6.0 httplib2-0.17.4 importlib-resources-5.1.2 joblib-1.0.1 kaggle-1.5.12 kiwisolver-1.3.1 lvis-0.5.3 lxml-4.6.3 matplotlib-3.4.1 mock-2.0.0 numpy-1.19.5 oauth2client-4.1.3 object-detection-0.1 opencv-python-4.5.1.48 opencv-python-headless-4.5.1.48 packaging-20.9 pandas-1.2.3 pbr-5.5.1 pillow-8.2.0 promise-2.3 proto-plus-1.18.1 psutil-5.8.0 py-cpuinfo-7.0.0 pyarrow-2.0.0 pycocotools-2.0.2 pycparser-2.20 pydot-1.4.2 pymongo-3.11.3 pyparsing-2.4.7 python-dateutil-2.8.1 python-slugify-4.0.1 pytz-2021.1 pyyaml-5.4.1 scikit-learn-0.24.1 scipy-1.6.2 sentencepiece-0.1.95 seqeval-1.2.2 tensorboard-2.4.1 tensorflow-2.4.1 tensorflow-addons-0.12.1 tensorflow-datasets-4.2.0 tensorflow-estimator-2.4.0 tensorflow-hub-0.11.0 tensorflow-metadata-0.29.0 tensorflow-model-optimization-0.5.0 text-unidecode-1.3 tf-models-official-2.4.0 tf-slim-1.1.0 threadpoolctl-2.1.0 tqdm-4.60.0 typeguard-2.12.0 uritemplate-3.0.1 (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research>
测试
(wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research>python object_detection/builders/model_builder_tf2_test.py 2021-04-12 14:15:52.486730: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll Running tests under Python 3.7.10: E:\Anaconda3\install\envs\wind_202103\python.exe [ RUN ] ModelBuilderTF2Test.test_create_center_net_model 2021-04-12 14:15:55.906964: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set 2021-04-12 14:15:55.914149: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library nvcuda.dll 2021-04-12 14:15:58.094186: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties: pciBusID: 0000:01:00.0 name: GeForce RTX 3080 Laptop GPU computeCapability: 8.6 coreClock: 1.245GHz coreCount: 48 deviceMemorySize: 16.00GiB deviceMemoryBandwidth: 357.69GiB/s 2021-04-12 14:15:58.094455: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll 2021-04-12 14:15:58.144854: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll 2021-04-12 14:15:58.144929: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll 2021-04-12 14:15:58.170496: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll 2021-04-12 14:15:58.178093: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll 2021-04-12 14:15:58.182160: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'cusolver64_10.dll'; dlerror: cusolver64_10.dll not found 2021-04-12 14:15:58.199838: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll 2021-04-12 14:15:58.203486: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll 2021-04-12 14:15:58.203589: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... 2021-04-12 14:15:58.204149: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-04-12 14:15:58.204888: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix: 2021-04-12 14:15:58.207014: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 2021-04-12 14:15:58.211032: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_center_net_model): 2.91s I0412 14:15:58.526351 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_center_net_model): 2.91s [ OK ] ModelBuilderTF2Test.test_create_center_net_model [ RUN ] ModelBuilderTF2Test.test_create_center_net_model_from_keypoints INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_center_net_model_from_keypoints): 0.25s I0412 14:15:58.776292 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_center_net_model_from_keypoints): 0.25s [ OK ] ModelBuilderTF2Test.test_create_center_net_model_from_keypoints [ RUN ] ModelBuilderTF2Test.test_create_experimental_model INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_experimental_model): 0.0s I0412 14:15:58.776292 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_experimental_model): 0.0s [ OK ] ModelBuilderTF2Test.test_create_experimental_model [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature0 (True) INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature0 (True)): 0.03s I0412 14:15:58.807536 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature0 (True)): 0.03s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature0 (True) [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature1 (False) INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature1 (False)): 0.02s I0412 14:15:58.823157 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature1 (False)): 0.02s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_from_config_with_crop_feature1 (False) [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_model_from_config_with_example_miner INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_model_from_config_with_example_miner): 0.02s I0412 14:15:58.838778 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_model_from_config_with_example_miner): 0.02s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_model_from_config_with_example_miner [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul): 0.09s I0412 14:15:58.932541 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul): 0.09s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_with_matmul [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul): 0.08s I0412 14:15:59.027438 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul): 0.08s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_faster_rcnn_without_matmul [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul): 0.1s I0412 14:15:59.138765 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul): 0.1s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_with_matmul [ RUN ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul): 0.09s I0412 14:15:59.232494 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul): 0.09s [ OK ] ModelBuilderTF2Test.test_create_faster_rcnn_models_from_config_mask_rcnn_without_matmul [ RUN ] ModelBuilderTF2Test.test_create_rfcn_model_from_config INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_rfcn_model_from_config): 0.09s I0412 14:15:59.341844 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_rfcn_model_from_config): 0.09s [ OK ] ModelBuilderTF2Test.test_create_rfcn_model_from_config [ RUN ] ModelBuilderTF2Test.test_create_ssd_fpn_model_from_config INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_ssd_fpn_model_from_config): 0.03s I0412 14:15:59.374269 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_ssd_fpn_model_from_config): 0.03s [ OK ] ModelBuilderTF2Test.test_create_ssd_fpn_model_from_config [ RUN ] ModelBuilderTF2Test.test_create_ssd_models_from_config I0412 14:15:59.589379 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b0 I0412 14:15:59.589379 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 64 I0412 14:15:59.589379 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 3 I0412 14:15:59.589379 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:15:59.605001 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:15:59.605001 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:15:59.636244 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:15:59.636244 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:15:59.746711 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:15:59.746711 11224 efficientnet_model.py:147] round_filter input=40 output=40 I0412 14:15:59.847079 11224 efficientnet_model.py:147] round_filter input=40 output=40 I0412 14:15:59.847079 11224 efficientnet_model.py:147] round_filter input=80 output=80 I0412 14:16:00.003327 11224 efficientnet_model.py:147] round_filter input=80 output=80 I0412 14:16:00.003327 11224 efficientnet_model.py:147] round_filter input=112 output=112 I0412 14:16:00.160682 11224 efficientnet_model.py:147] round_filter input=112 output=112 I0412 14:16:00.160682 11224 efficientnet_model.py:147] round_filter input=192 output=192 I0412 14:16:00.420666 11224 efficientnet_model.py:147] round_filter input=192 output=192 I0412 14:16:00.420666 11224 efficientnet_model.py:147] round_filter input=320 output=320 I0412 14:16:00.484324 11224 efficientnet_model.py:147] round_filter input=1280 output=1280 I0412 14:16:00.515606 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.0, depth_coefficient=1.0, resolution=224, dropout_rate=0.2, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:00.572247 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b1 I0412 14:16:00.572247 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 88 I0412 14:16:00.572247 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 4 I0412 14:16:00.572247 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:16:00.587869 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:16:00.587869 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:16:00.665976 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:16:00.665976 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:16:00.822189 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:16:00.822189 11224 efficientnet_model.py:147] round_filter input=40 output=40 I0412 14:16:00.981099 11224 efficientnet_model.py:147] round_filter input=40 output=40 I0412 14:16:00.981099 11224 efficientnet_model.py:147] round_filter input=80 output=80 I0412 14:16:01.184208 11224 efficientnet_model.py:147] round_filter input=80 output=80 I0412 14:16:01.184208 11224 efficientnet_model.py:147] round_filter input=112 output=112 I0412 14:16:01.391219 11224 efficientnet_model.py:147] round_filter input=112 output=112 I0412 14:16:01.391219 11224 efficientnet_model.py:147] round_filter input=192 output=192 I0412 14:16:01.672546 11224 efficientnet_model.py:147] round_filter input=192 output=192 I0412 14:16:01.672546 11224 efficientnet_model.py:147] round_filter input=320 output=320 I0412 14:16:01.801679 11224 efficientnet_model.py:147] round_filter input=1280 output=1280 I0412 14:16:01.832922 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.0, depth_coefficient=1.1, resolution=240, dropout_rate=0.2, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:01.879786 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b2 I0412 14:16:01.879786 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 112 I0412 14:16:01.879786 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 5 I0412 14:16:01.895407 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:16:01.895407 11224 efficientnet_model.py:147] round_filter input=32 output=32 I0412 14:16:01.911029 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:16:01.989136 11224 efficientnet_model.py:147] round_filter input=16 output=16 I0412 14:16:01.989136 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:16:02.130882 11224 efficientnet_model.py:147] round_filter input=24 output=24 I0412 14:16:02.130882 11224 efficientnet_model.py:147] round_filter input=40 output=48 I0412 14:16:02.293226 11224 efficientnet_model.py:147] round_filter input=40 output=48 I0412 14:16:02.293226 11224 efficientnet_model.py:147] round_filter input=80 output=88 I0412 14:16:02.497462 11224 efficientnet_model.py:147] round_filter input=80 output=88 I0412 14:16:02.497462 11224 efficientnet_model.py:147] round_filter input=112 output=120 I0412 14:16:02.780225 11224 efficientnet_model.py:147] round_filter input=112 output=120 I0412 14:16:02.780225 11224 efficientnet_model.py:147] round_filter input=192 output=208 I0412 14:16:03.053839 11224 efficientnet_model.py:147] round_filter input=192 output=208 I0412 14:16:03.053839 11224 efficientnet_model.py:147] round_filter input=320 output=352 I0412 14:16:03.178811 11224 efficientnet_model.py:147] round_filter input=1280 output=1408 I0412 14:16:03.210053 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.1, depth_coefficient=1.2, resolution=260, dropout_rate=0.3, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:03.272538 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b3 I0412 14:16:03.272538 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 160 I0412 14:16:03.272538 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 6 I0412 14:16:03.288159 11224 efficientnet_model.py:147] round_filter input=32 output=40 I0412 14:16:03.288159 11224 efficientnet_model.py:147] round_filter input=32 output=40 I0412 14:16:03.288159 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:03.367403 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:03.367403 11224 efficientnet_model.py:147] round_filter input=24 output=32 I0412 14:16:03.525760 11224 efficientnet_model.py:147] round_filter input=24 output=32 I0412 14:16:03.525760 11224 efficientnet_model.py:147] round_filter input=40 output=48 I0412 14:16:03.681978 11224 efficientnet_model.py:147] round_filter input=40 output=48 I0412 14:16:03.681978 11224 efficientnet_model.py:147] round_filter input=80 output=96 I0412 14:16:03.936995 11224 efficientnet_model.py:147] round_filter input=80 output=96 I0412 14:16:03.936995 11224 efficientnet_model.py:147] round_filter input=112 output=136 I0412 14:16:04.211657 11224 efficientnet_model.py:147] round_filter input=112 output=136 I0412 14:16:04.211657 11224 efficientnet_model.py:147] round_filter input=192 output=232 I0412 14:16:04.560706 11224 efficientnet_model.py:147] round_filter input=192 output=232 I0412 14:16:04.560706 11224 efficientnet_model.py:147] round_filter input=320 output=384 I0412 14:16:04.701331 11224 efficientnet_model.py:147] round_filter input=1280 output=1536 I0412 14:16:04.732574 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.2, depth_coefficient=1.4, resolution=300, dropout_rate=0.3, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:04.795061 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b4 I0412 14:16:04.795061 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 224 I0412 14:16:04.795061 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 7 I0412 14:16:04.795061 11224 efficientnet_model.py:147] round_filter input=32 output=48 I0412 14:16:04.810693 11224 efficientnet_model.py:147] round_filter input=32 output=48 I0412 14:16:04.810693 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:04.889998 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:04.889998 11224 efficientnet_model.py:147] round_filter input=24 output=32 I0412 14:16:05.079239 11224 efficientnet_model.py:147] round_filter input=24 output=32 I0412 14:16:05.079239 11224 efficientnet_model.py:147] round_filter input=40 output=56 I0412 14:16:05.410891 11224 efficientnet_model.py:147] round_filter input=40 output=56 I0412 14:16:05.410891 11224 efficientnet_model.py:147] round_filter input=80 output=112 I0412 14:16:05.725448 11224 efficientnet_model.py:147] round_filter input=80 output=112 I0412 14:16:05.725448 11224 efficientnet_model.py:147] round_filter input=112 output=160 I0412 14:16:06.054715 11224 efficientnet_model.py:147] round_filter input=112 output=160 I0412 14:16:06.054715 11224 efficientnet_model.py:147] round_filter input=192 output=272 I0412 14:16:06.576864 11224 efficientnet_model.py:147] round_filter input=192 output=272 I0412 14:16:06.576864 11224 efficientnet_model.py:147] round_filter input=320 output=448 I0412 14:16:06.717458 11224 efficientnet_model.py:147] round_filter input=1280 output=1792 I0412 14:16:06.749806 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.4, depth_coefficient=1.8, resolution=380, dropout_rate=0.4, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:06.824114 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b5 I0412 14:16:06.824114 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 288 I0412 14:16:06.824114 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 7 I0412 14:16:06.824114 11224 efficientnet_model.py:147] round_filter input=32 output=48 I0412 14:16:06.839785 11224 efficientnet_model.py:147] round_filter input=32 output=48 I0412 14:16:06.839785 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:06.964734 11224 efficientnet_model.py:147] round_filter input=16 output=24 I0412 14:16:06.964734 11224 efficientnet_model.py:147] round_filter input=24 output=40 I0412 14:16:07.215926 11224 efficientnet_model.py:147] round_filter input=24 output=40 I0412 14:16:07.215926 11224 efficientnet_model.py:147] round_filter input=40 output=64 I0412 14:16:07.462391 11224 efficientnet_model.py:147] round_filter input=40 output=64 I0412 14:16:07.462391 11224 efficientnet_model.py:147] round_filter input=80 output=128 I0412 14:16:07.847848 11224 efficientnet_model.py:147] round_filter input=80 output=128 I0412 14:16:07.847848 11224 efficientnet_model.py:147] round_filter input=112 output=176 I0412 14:16:08.227632 11224 efficientnet_model.py:147] round_filter input=112 output=176 I0412 14:16:08.227632 11224 efficientnet_model.py:147] round_filter input=192 output=304 I0412 14:16:08.935734 11224 efficientnet_model.py:147] round_filter input=192 output=304 I0412 14:16:08.935734 11224 efficientnet_model.py:147] round_filter input=320 output=512 I0412 14:16:09.201296 11224 efficientnet_model.py:147] round_filter input=1280 output=2048 I0412 14:16:09.248161 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.6, depth_coefficient=2.2, resolution=456, dropout_rate=0.4, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:09.327469 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b6 I0412 14:16:09.327469 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 384 I0412 14:16:09.327469 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 8 I0412 14:16:09.330456 11224 efficientnet_model.py:147] round_filter input=32 output=56 I0412 14:16:09.330456 11224 efficientnet_model.py:147] round_filter input=32 output=56 I0412 14:16:09.330456 11224 efficientnet_model.py:147] round_filter input=16 output=32 I0412 14:16:09.455431 11224 efficientnet_model.py:147] round_filter input=16 output=32 I0412 14:16:09.455431 11224 efficientnet_model.py:147] round_filter input=24 output=40 I0412 14:16:09.769093 11224 efficientnet_model.py:147] round_filter input=24 output=40 I0412 14:16:09.769093 11224 efficientnet_model.py:147] round_filter input=40 output=72 I0412 14:16:10.072026 11224 efficientnet_model.py:147] round_filter input=40 output=72 I0412 14:16:10.072026 11224 efficientnet_model.py:147] round_filter input=80 output=144 I0412 14:16:10.504786 11224 efficientnet_model.py:147] round_filter input=80 output=144 I0412 14:16:10.504786 11224 efficientnet_model.py:147] round_filter input=112 output=200 I0412 14:16:10.973426 11224 efficientnet_model.py:147] round_filter input=112 output=200 I0412 14:16:10.973426 11224 efficientnet_model.py:147] round_filter input=192 output=344 I0412 14:16:11.731940 11224 efficientnet_model.py:147] round_filter input=192 output=344 I0412 14:16:11.731940 11224 efficientnet_model.py:147] round_filter input=320 output=576 I0412 14:16:12.084060 11224 efficientnet_model.py:147] round_filter input=1280 output=2304 I0412 14:16:12.130926 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=1.8, depth_coefficient=2.6, resolution=528, dropout_rate=0.5, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') I0412 14:16:12.209056 11224 ssd_efficientnet_bifpn_feature_extractor.py:143] EfficientDet EfficientNet backbone version: efficientnet-b7 I0412 14:16:12.209056 11224 ssd_efficientnet_bifpn_feature_extractor.py:144] EfficientDet BiFPN num filters: 384 I0412 14:16:12.224833 11224 ssd_efficientnet_bifpn_feature_extractor.py:146] EfficientDet BiFPN num iterations: 8 I0412 14:16:12.224833 11224 efficientnet_model.py:147] round_filter input=32 output=64 I0412 14:16:12.224833 11224 efficientnet_model.py:147] round_filter input=32 output=64 I0412 14:16:12.224833 11224 efficientnet_model.py:147] round_filter input=16 output=32 I0412 14:16:12.388885 11224 efficientnet_model.py:147] round_filter input=16 output=32 I0412 14:16:12.388885 11224 efficientnet_model.py:147] round_filter input=24 output=48 I0412 14:16:12.748528 11224 efficientnet_model.py:147] round_filter input=24 output=48 I0412 14:16:12.748528 11224 efficientnet_model.py:147] round_filter input=40 output=80 I0412 14:16:13.119887 11224 efficientnet_model.py:147] round_filter input=40 output=80 I0412 14:16:13.119887 11224 efficientnet_model.py:147] round_filter input=80 output=160 I0412 14:16:13.672224 11224 efficientnet_model.py:147] round_filter input=80 output=160 I0412 14:16:13.672224 11224 efficientnet_model.py:147] round_filter input=112 output=224 I0412 14:16:14.254858 11224 efficientnet_model.py:147] round_filter input=112 output=224 I0412 14:16:14.254858 11224 efficientnet_model.py:147] round_filter input=192 output=384 I0412 14:16:15.250613 11224 efficientnet_model.py:147] round_filter input=192 output=384 I0412 14:16:15.250613 11224 efficientnet_model.py:147] round_filter input=320 output=640 I0412 14:16:15.611495 11224 efficientnet_model.py:147] round_filter input=1280 output=2560 I0412 14:16:15.658359 11224 efficientnet_model.py:458] Building model efficientnet with params ModelConfig(width_coefficient=2.0, depth_coefficient=3.1, resolution=600, dropout_rate=0.5, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32') INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_ssd_models_from_config): 16.39s I0412 14:16:15.767739 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_create_ssd_models_from_config): 16.39s [ OK ] ModelBuilderTF2Test.test_create_ssd_models_from_config [ RUN ] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update): 0.0s I0412 14:16:15.767739 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update): 0.0s [ OK ] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update [ RUN ] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold): 0.0s I0412 14:16:15.783332 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold): 0.0s [ OK ] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold [ RUN ] ModelBuilderTF2Test.test_invalid_model_config_proto INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_model_config_proto): 0.0s I0412 14:16:15.792893 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_invalid_model_config_proto): 0.0s [ OK ] ModelBuilderTF2Test.test_invalid_model_config_proto [ RUN ] ModelBuilderTF2Test.test_invalid_second_stage_batch_size INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_second_stage_batch_size): 0.0s I0412 14:16:15.796538 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_invalid_second_stage_batch_size): 0.0s [ OK ] ModelBuilderTF2Test.test_invalid_second_stage_batch_size [ RUN ] ModelBuilderTF2Test.test_session [ SKIPPED ] ModelBuilderTF2Test.test_session [ RUN ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor): 0.0s I0412 14:16:15.801620 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor): 0.0s [ OK ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor [ RUN ] ModelBuilderTF2Test.test_unknown_meta_architecture INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_meta_architecture): 0.0s I0412 14:16:15.803169 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_unknown_meta_architecture): 0.0s [ OK ] ModelBuilderTF2Test.test_unknown_meta_architecture [ RUN ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_ssd_feature_extractor): 0.0s I0412 14:16:15.805706 11224 test_util.py:2076] time(__main__.ModelBuilderTF2Test.test_unknown_ssd_feature_extractor): 0.0s [ OK ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor ---------------------------------------------------------------------- Ran 21 tests in 20.176s OK (skipped=1) (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research> (wind_202103) F:\TensorflowProject\models-master\research>
###########
QQ 3087438119