IfcBSplineCurveWithKnots
ifcbsprinecurvewithknots是一条样条曲线,它由样条函数参数化,其中明确给出了节点值。
注:定义根据ISO/CD 10303-42:1992
这是一种b样条曲线,其中明确给出了节点值。该子类型应用于表示非均匀B样条曲线,也可用于其他结类型。
让L表示结列表中d+k+2结中不同值的数目;L将被称为“结上索引”。设mj表示第j个不同结的多重性(即,重复次数)。然后:
除第一个和最后一个外,所有结重数应在1,…,d范围内;第一个和最后一个可能具有最大值d+1。在计算基函数时,例如重数3的结u被解释为结数组中的序列u,u,u。
注:实体改编自b_样条曲线_,节点如ISO10303-42所定义。
IFC4中增加的新实体。
Formal Propositions
Rule | Description |
---|---|
ConsistentBSpline | The function IfcConstraintsParamBSpline returns TRUE if no inconsistencies in the parametrisation of the B-spline are found. |
CorrespondingKnotLists | The number of elements in the knot multiplicities list shall be equal to the number of elements in the knots list. |
# | Attribute | Type | Cardinality | Description | C |
---|---|---|---|---|---|
IfcRepresentationItem | |||||
LayerAssignment | IfcPresentationLayerAssignment @AssignedItems |
S[0:1] | Assignment of the representation item to a single or multiple layer(s). The LayerAssignments can override a LayerAssignments of the IfcRepresentation it is used within the list of Items. | X | |
StyledByItem | IfcStyledItem @Item |
S[0:1] | Reference to the IfcStyledItem that provides presentation information to the representation, e.g. a curve style, including colour and thickness to a geometric curve. | X | |
IfcGeometricRepresentationItem | |||||
IfcCurve | |||||
Dim :=IfcCurveDim(SELF) |
IfcDimensionCount | [1:1] | The space dimensionality of this abstract class, defined differently for all subtypes, i.e. for IfcLine, IfcConic and IfcBoundedCurve. | X | |
IfcBoundedCurve | |||||
IfcBSplineCurve | |||||
1 | Degree | IfcInteger | [1:1] | The algebraic degree of the basis functions. | X |
2 | ControlPointsList | IfcCartesianPoint | L[2:?] | The list of control points for the curve. | X |
3 | CurveForm | IfcBSplineCurveForm | [1:1] | Used to identify particular types of curve; it is for information only. | X |
4 | ClosedCurve | IfcLogical | [1:1] | Indication of whether the curve is closed; it is for information only. | X |
5 | SelfIntersect | IfcLogical | [1:1] | Indication whether the curve self-intersects or not; it is for information only. | X |
UpperIndexOnControlPoints :=(SIZEOF(ControlPointsList) - 1) |
IfcInteger | [1:1] | The upper index on the array of control points; the lower index is 0. This value is derived from the control points list. | X | |
ControlPoints :=IfcListToArray(ControlPointsList,0,UpperIndexOnControlPoints) |
IfcCartesianPoint | A[0:UpperIndexOnControlPoints] | The array of control points used to define the geometry of the curve. This is derived from the list of control points. | X | |
IfcBSplineCurveWithKnots | |||||
6 | KnotMultiplicities | IfcInteger | L[2:?] | The multiplicities of the knots. This list defines the number of times each knot in the knots list is to be repeated in constructing the knot array. | X |
7 | Knots | IfcParameterValue | L[2:?] | The list of distinct knots used to define the B-spline basis functions. | X |
8 | KnotSpec | IfcKnotType | [1:1] | The description of the knot type. This is for information only. | X |
UpperIndexOnKnots :=SIZEOF(Knots) |
IfcInteger | [1:1] | The upper index on the knot arrays; the lower index is 1. | X |
EXPRESS Specification
ENTITY IfcBSplineCurveWithKnots
SUPERTYPE OF(IfcRationalBSplineCurveWithKnots)
SUBTYPE OF (IfcBSplineCurve);
KnotMultiplicities : LIST [2:?] OF IfcInteger;
Knots : LIST [2:?] OF IfcParameterValue;
KnotSpec : IfcKnotType;
DERIVE
UpperIndexOnKnots : IfcInteger := SIZEOF(Knots);
WHERE
ConsistentBSpline : IfcConstraintsParamBSpline(Degree, UpperIndexOnKnots, UpperIndexOnControlPoints, KnotMultiplicities, Knots);
CorrespondingKnotLists : SIZEOF(KnotMultiplicities) = UpperIndexOnKnots;
END_ENTITY;
QQ 3087438119