IfcBSplineCurveWithKnots

ifcbsprinecurvewithknots是一条样条曲线,它由样条函数参数化,其中明确给出了节点值。

注:定义根据ISO/CD 10303-42:1992

这是一种b样条曲线,其中明确给出了节点值。该子类型应用于表示非均匀B样条曲线,也可用于其他结类型。

让L表示结列表中d+k+2结中不同值的数目;L将被称为“结上索引”。设mj表示第j个不同结的多重性(即,重复次数)。然后:

除第一个和最后一个外,所有结重数应在1,…,d范围内;第一个和最后一个可能具有最大值d+1。在计算基函数时,例如重数3的结u被解释为结数组中的序列u,u,u。

注:实体改编自b_样条曲线_,节点如ISO10303-42所定义。

IFC4中增加的新实体。

Formal Propositions

RuleDescription
ConsistentBSpline The function IfcConstraintsParamBSpline returns TRUE if no inconsistencies in the parametrisation of the B-spline are found.
CorrespondingKnotLists The number of elements in the knot multiplicities list shall be equal to the number of elements in the knots list.

 

#AttributeTypeCardinalityDescriptionC
IfcRepresentationItem
  LayerAssignment IfcPresentationLayerAssignment
@AssignedItems
S[0:1] Assignment of the representation item to a single or multiple layer(s). The LayerAssignments can override a LayerAssignments of the IfcRepresentation it is used within the list of Items. X
  StyledByItem IfcStyledItem
@Item
S[0:1] Reference to the IfcStyledItem that provides presentation information to the representation, e.g. a curve style, including colour and thickness to a geometric curve. X
IfcGeometricRepresentationItem
IfcCurve
  Dim
:=IfcCurveDim(SELF)
IfcDimensionCount [1:1] The space dimensionality of this abstract class, defined differently for all subtypes, i.e. for IfcLine, IfcConic and IfcBoundedCurve. X
IfcBoundedCurve
IfcBSplineCurve
1 Degree IfcInteger [1:1] The algebraic degree of the basis functions. X
2 ControlPointsList IfcCartesianPoint L[2:?] The list of control points for the curve. X
3 CurveForm IfcBSplineCurveForm [1:1] Used to identify particular types of curve; it is for information only. X
4 ClosedCurve IfcLogical [1:1] Indication of whether the curve is closed; it is for information only. X
5 SelfIntersect IfcLogical [1:1] Indication whether the curve self-intersects or not; it is for information only. X
  UpperIndexOnControlPoints
:=(SIZEOF(ControlPointsList) - 1)
IfcInteger [1:1] The upper index on the array of control points; the lower index is 0. This value is derived from the control points list. X
  ControlPoints
:=IfcListToArray(ControlPointsList,0,UpperIndexOnControlPoints)
IfcCartesianPoint A[0:UpperIndexOnControlPoints] The array of control points used to define the geometry of the curve. This is derived from the list of control points. X
IfcBSplineCurveWithKnots
6 KnotMultiplicities IfcInteger L[2:?] The multiplicities of the knots. This list defines the number of times each knot in the knots list is to be repeated in constructing the knot array. X
7 Knots IfcParameterValue L[2:?] The list of distinct knots used to define the B-spline basis functions. X
8 KnotSpec IfcKnotType [1:1] The description of the knot type. This is for information only. X
  UpperIndexOnKnots
:=SIZEOF(Knots)
IfcInteger [1:1] The upper index on the knot arrays; the lower index is 1. X
EXPRESS Specification
ENTITY IfcBSplineCurveWithKnots
 SUPERTYPE OF(IfcRationalBSplineCurveWithKnots)
 SUBTYPE OF (IfcBSplineCurve);
  KnotMultiplicities : LIST [2:?] OF IfcInteger;
  Knots : LIST [2:?] OF IfcParameterValue;
  KnotSpec : IfcKnotType;
 DERIVE
  UpperIndexOnKnots : IfcInteger := SIZEOF(Knots);
 WHERE
  ConsistentBSpline : IfcConstraintsParamBSpline(Degree, UpperIndexOnKnots, UpperIndexOnControlPoints, KnotMultiplicities, Knots);
  CorrespondingKnotLists : SIZEOF(KnotMultiplicities) = UpperIndexOnKnots;
END_ENTITY;

 

posted @ 2020-06-30 08:02  西北逍遥  阅读(337)  评论(0编辑  收藏  举报