Tensorflow CIFAR10 (二分类)

数据的下载:

(共有三个版本:python,matlab,binary version 适用于C语言)

http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz

http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz

http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz

 

import os
import _pickle as cPickle #python3
import numpy as np

import tensorflow as tf
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow

#dataset dir
CIFAR_DIR = "./cifa-10-batches-py"

def load_data(filename):
  '''read data from data file'''
  with open(filename,'rb') as f:
    data1 = cPickle.load(f,encoding='bytes')
    return data1[b'data'],data1[b'labels']

 

class CifarData:
  def __init__(self,filenames,need_shuffle):
    all_data = []
    all_labels = []
    for filename in filenames:
      data,labels = load_data(filename)
      for item,label in zip(data,labels):
        if label in [0,1]:
          all_data.append(item)
          all_labels.append(label)

    self._data = np.vstack(all_data)
    self._data = self._data/127.5-1

    self._labels = np.hstack(all_labels)

    print("============================")
    print(self._data.shape)
    print(self._labels.shape)

    self._num_examples = self._data.shape[0]
    self._need_shuffle = need_shuffle
    self._indicator = 0
    if self._need_shuffle:
      self._shuffle_data()

  def _shuffle_data(self):
    #[0,1,2,3,4,5]->[5,3,2,4,0,1]
    p = np.random.permutation(self._num_examples)
    self._data = self._data[p]
    self._labels = self._labels[p]


  def next_batch(self,batch_size):
    """return batch_size examples as a batch."""
    end_indicator = self._indicator + batch_size
    if end_indicator>self._num_examples:
      if self._need_shuffle:
        self._shuffle_data()
        self._indicator = 0
        end_indicator = batch_size
      else:
        raise Exception("have no more examples...")

    if batch_size > self._num_examples:
      raise Exception("batch size is larger than all examples")

    batch_data = self._data[self._indicator:end_indicator]
    batch_labels = self._labels[self._indicator:end_indicator]
    self._indicator = end_indicator
    return batch_data,batch_labels

 

x = tf.placeholder(tf.float32,[None,3072])
#x = tf.placeholder(tf.float32,[None,32,32,3])
#[None]
y = tf.placeholder(tf.int64,[None])
#y = tf.placeholder(tf.int64,[10])

#(3071 ,1)
w = tf.get_variable('w',[x.get_shape()[-1],1],
initializer = tf.random_normal_initializer(0,1))

#(1,)
b = tf.get_variable('b',[1],
initializer = tf.constant_initializer(0.0))

#[None,3072]*[3072,1] = [None,1]
y_ = tf.matmul(x,w)+b

#[None,1]
p_y_1 = tf.nn.sigmoid(y_)

#[None,1]
y_reshaped = tf.reshape(y,(-1,1))
y_reshaped_float = tf.cast(y_reshaped,tf.float32)

loss = tf.reduce_mean(tf.square(y_reshaped_float-p_y_1))

#bool
predict = p_y_1>0.5
#[1,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0]
correct_prediction = tf.equal(tf.cast(predict,tf.int64),y_reshaped)

accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float64))

with tf.name_scope('train_op'):
  train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)

 

train_filenames = [os.path.join(CIFAR_DIR,'data_batch_%d' % i) for i in range(1,6)]
test_filenames = [os.path.join(CIFAR_DIR,'test_batch')]

train_data = CifarData(train_filenames,True)
test_data = CifarData(test_filenames,False)

#batch_data,batch_labels = train_data.next_batch(10)
#print("-----------------------------------------------------")
#print(batch_data)
#print(batch_labels)

 

 

init = tf.global_variables_initializer()
batch_size = 20
train_steps = 100000

test_steps = 100

with tf.Session() as sess:
  sess.run(init)
  for i in range(train_steps):
    batch_data1,batch_labels1 = train_data.next_batch(batch_size)
    #batch_data,batch_labels = sess.run([])
    #print("-------------------1-------------------")
    #print(batch_data1)
    #print(batch_labels1)
    #print("-------------------2-------------------")
    loss_val,acc_val,_ = sess.run(
      [loss,accuracy,train_op],
      #[train_op,loss],
      feed_dict={
        x:batch_data1,
        y:batch_labels1
      }
    )

    if (i+1)%500 ==0:
      print('Train step:%d,loss:%4.5f,acc:%4.5f'\
        %(i+1,loss_val,acc_val))

    if (i+1)%5000 ==0:
      test_data = CifarData(test_filenames,False)
      all_test_acc_val = []
      for j in range(test_steps):
        test_batch_data,test_batch_labels = test_data.next_batch(batch_size)
        test_acc_val = sess.run(
          [accuracy],
          feed_dict = {
            x:test_batch_data,
            y:test_batch_labels
          }
        )

        all_test_acc_val.append(test_acc_val)
      test_acc = np.mean(all_test_acc_val)
      print('Test Step:%d, acc:%4.5f'%(i+1,test_acc))

 

posted @ 2019-01-07 10:30  西北逍遥  阅读(1099)  评论(0编辑  收藏  举报