Prim算法
1、算法简单描述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
public class PrimMST { private static final double FLOATING_POINT_EPSILON = 1E-12; private Edge[] edgeTo; // edgeTo[v] = shortest edge from tree vertex to non-tree vertex private double[] distTo; // distTo[v] = weight of shortest such edge private boolean[] marked; // marked[v] = true if v on tree, false otherwise private IndexMinPQ<Double> pq; /** * Compute a minimum spanning tree (or forest) of an edge-weighted graph. * @param G the edge-weighted graph */ public PrimMST(EdgeWeightedGraph G) { edgeTo = new Edge[G.V()]; distTo = new double[G.V()]; marked = new boolean[G.V()]; pq = new IndexMinPQ<Double>(G.V()); for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY; for (int v = 0; v < G.V(); v++) // run from each vertex to find if (!marked[v]) prim(G, v); // minimum spanning forest // check optimality conditions assert check(G); } // run Prim's algorithm in graph G, starting from vertex s private void prim(EdgeWeightedGraph G, int s) { distTo[s] = 0.0; pq.insert(s, distTo[s]); while (!pq.isEmpty()) { int v = pq.delMin(); scan(G, v); } } // scan vertex v private void scan(EdgeWeightedGraph G, int v) { marked[v] = true; for (Edge e : G.adj(v)) { int w = e.other(v); if (marked[w]) continue; // v-w is obsolete edge if (e.weight() < distTo[w]) { distTo[w] = e.weight(); edgeTo[w] = e; if (pq.contains(w)) pq.decreaseKey(w, distTo[w]); else pq.insert(w, distTo[w]); } } } /** * Returns the edges in a minimum spanning tree (or forest). * @return the edges in a minimum spanning tree (or forest) as * an iterable of edges */ public Iterable<Edge> edges() { Queue<Edge> mst = new Queue<Edge>(); for (int v = 0; v < edgeTo.length; v++) { Edge e = edgeTo[v]; if (e != null) { mst.enqueue(e); } } return mst; } /** * Returns the sum of the edge weights in a minimum spanning tree (or forest). * @return the sum of the edge weights in a minimum spanning tree (or forest) */ public double weight() { double weight = 0.0; for (Edge e : edges()) weight += e.weight(); return weight; } // check optimality conditions (takes time proportional to E V lg* V) private boolean check(EdgeWeightedGraph G) { // check weight double totalWeight = 0.0; for (Edge e : edges()) { totalWeight += e.weight(); } if (Math.abs(totalWeight - weight()) > FLOATING_POINT_EPSILON) { System.err.printf("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight()); return false; } // check that it is acyclic UF uf = new UF(G.V()); for (Edge e : edges()) { int v = e.either(), w = e.other(v); if (uf.find(v) == uf.find(w)) { System.err.println("Not a forest"); return false; } uf.union(v, w); } // check that it is a spanning forest for (Edge e : G.edges()) { int v = e.either(), w = e.other(v); if (uf.find(v) != uf.find(w)) { System.err.println("Not a spanning forest"); return false; } } // check that it is a minimal spanning forest (cut optimality conditions) for (Edge e : edges()) { // all edges in MST except e uf = new UF(G.V()); for (Edge f : edges()) { int x = f.either(), y = f.other(x); if (f != e) uf.union(x, y); } // check that e is min weight edge in crossing cut for (Edge f : G.edges()) { int x = f.either(), y = f.other(x); if (uf.find(x) != uf.find(y)) { if (f.weight() < e.weight()) { System.err.println("Edge " + f + " violates cut optimality conditions"); return false; } } } } return true; } /** * Unit tests the {@code PrimMST} data type. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); EdgeWeightedGraph G = new EdgeWeightedGraph(in); PrimMST mst = new PrimMST(G); for (Edge e : mst.edges()) { StdOut.println(e); } StdOut.printf("%.5f\n", mst.weight()); } }