有向图中基于深度优先搜索的顶点排序

有向图中基于深度优先搜索的顶点排序:

  • 前序:在递归调用之前将顶点加入队列
  • 后序:在递归调用之后将顶点加入队列
  • 逆后序:在递归调用之后将顶点压入

代码:

public class DepthFirstOrder {
    private boolean[] marked;          // marked[v] = has v been marked in dfs?
    private int[] pre;                 // pre[v]    = preorder  number of v
    private int[] post;                // post[v]   = postorder number of v
    private Queue<Integer> preorder;   // vertices in preorder
    private Queue<Integer> postorder;  // vertices in postorder
    private int preCounter;            // counter or preorder numbering
    private int postCounter;           // counter for postorder numbering

    /**
     * Determines a depth-first order for the digraph {@code G}.
     * @param G the digraph
     */
    public DepthFirstOrder(Digraph G) {
        pre    = new int[G.V()];
        post   = new int[G.V()];
        postorder = new Queue<Integer>();
        preorder  = new Queue<Integer>();
        marked    = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);

        assert check();
    }

    /**
     * Determines a depth-first order for the edge-weighted digraph {@code G}.
     * @param G the edge-weighted digraph
     */
    public DepthFirstOrder(EdgeWeightedDigraph G) {
        pre    = new int[G.V()];
        post   = new int[G.V()];
        postorder = new Queue<Integer>();
        preorder  = new Queue<Integer>();
        marked    = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }

    // run DFS in digraph G from vertex v and compute preorder/postorder
    private void dfs(Digraph G, int v) {
        marked[v] = true;
        pre[v] = preCounter++;
        preorder.enqueue(v);
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, w);
            }
        }
        postorder.enqueue(v);
        post[v] = postCounter++;
    }

    // run DFS in edge-weighted digraph G from vertex v and compute preorder/postorder
    private void dfs(EdgeWeightedDigraph G, int v) {
        marked[v] = true;
        pre[v] = preCounter++;
        preorder.enqueue(v);
        for (DirectedEdge e : G.adj(v)) {
            int w = e.to();
            if (!marked[w]) {
                dfs(G, w);
            }
        }
        postorder.enqueue(v);
        post[v] = postCounter++;
    }

    /**
     * Returns the preorder number of vertex {@code v}.
     * @param  v the vertex
     * @return the preorder number of vertex {@code v}
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int pre(int v) {
        validateVertex(v);
        return pre[v];
    }

    /**
     * Returns the postorder number of vertex {@code v}.
     * @param  v the vertex
     * @return the postorder number of vertex {@code v}
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int post(int v) {
        validateVertex(v);
        return post[v];
    }

    /**
     * Returns the vertices in postorder.
     * @return the vertices in postorder, as an iterable of vertices
     */
    public Iterable<Integer> post() {
        return postorder;
    }

    /**
     * Returns the vertices in preorder.
     * @return the vertices in preorder, as an iterable of vertices
     */
    public Iterable<Integer> pre() {
        return preorder;
    }

    /**
     * Returns the vertices in reverse postorder.
     * @return the vertices in reverse postorder, as an iterable of vertices
     */
    public Iterable<Integer> reversePost() {
        Stack<Integer> reverse = new Stack<Integer>();
        for (int v : postorder)
            reverse.push(v);
        return reverse;
    }


    // check that pre() and post() are consistent with pre(v) and post(v)
    private boolean check() {

        // check that post(v) is consistent with post()
        int r = 0;
        for (int v : post()) {
            if (post(v) != r) {
                StdOut.println("post(v) and post() inconsistent");
                return false;
            }
            r++;
        }

        // check that pre(v) is consistent with pre()
        r = 0;
        for (int v : pre()) {
            if (pre(v) != r) {
                StdOut.println("pre(v) and pre() inconsistent");
                return false;
            }
            r++;
        }

        return true;
    }

    // throw an IllegalArgumentException unless {@code 0 <= v < V}
    private void validateVertex(int v) {
        int V = marked.length;
        if (v < 0 || v >= V)
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
    }

    /**
     * Unit tests the {@code DepthFirstOrder} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        Digraph G = new Digraph(in);

        DepthFirstOrder dfs = new DepthFirstOrder(G);
        StdOut.println("   v  pre post");
        StdOut.println("--------------");
        for (int v = 0; v < G.V(); v++) {
            StdOut.printf("%4d %4d %4d\n", v, dfs.pre(v), dfs.post(v));
        }

        StdOut.print("Preorder:  ");
        for (int v : dfs.pre()) {
            StdOut.print(v + " ");
        }
        StdOut.println();

        StdOut.print("Postorder: ");
        for (int v : dfs.post()) {
            StdOut.print(v + " ");
        }
        StdOut.println();

        StdOut.print("Reverse postorder: ");
        for (int v : dfs.reversePost()) {
            StdOut.print(v + " ");
        }
        StdOut.println();


    }

}

 

posted @ 2021-01-21 14:22  wangheq  阅读(128)  评论(0编辑  收藏  举报